1
|
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S, Zhang C. Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 2024; 30:200. [PMID: 39239742 PMCID: PMC11411235 DOI: 10.3892/mmr.2024.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Collapse
Affiliation(s)
- Kexin Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyi Li
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Wei S, Gao T, Wu Y, Wang G, Chen Y, Tao X, Liang Y, Zhou Z, Sun L, Liu M, Li H, Bao Y. The relationship between expression of Tspan5 mRNA in maternal-fetal interface and tubal pregnancy. Eur J Obstet Gynecol Reprod Biol 2024; 296:91-98. [PMID: 38422804 DOI: 10.1016/j.ejogrb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Shiyuan Wei
- The Department of Gynecology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Tianyang Gao
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Yihua Wu
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Guiming Wang
- Department of Pathology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yao Chen
- The Department of Reproductive Medicine Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Xinli Tao
- The Department of Gynecology, Xiangzhou District People's Hospital, Xiangyang, Hubei, China
| | - Yingqiu Liang
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Henan, China
| | - Zijun Zhou
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Liyan Sun
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Minyin Liu
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Haiyan Li
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yanjing Bao
- The Department of Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Roh S, Kim S, Hong I, Lee M, Kim HJ, Ahn TS, Kang DH, Baek MJ, Kwak HJ, Kim CJ, Jeong D. High Expression of Tetraspanin 5 as a Prognostic Marker of Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24076476. [PMID: 37047447 PMCID: PMC10094774 DOI: 10.3390/ijms24076476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is a major disease and the leading cause of death worldwide, with colorectal cancer (CRC) being the third-most common cancer in Korea. The survival rate associated with CRC reduces as the disease stage increases. Therefore, its early detection and treatment can greatly increase patient survival rates. In this study, we identified the tetraspanin 5 (TSPAN5) gene as an important biomarker for predicting the prognosis of patients with CRC. A TMA slide was used for statistical analysis. pN and clinical stage were found to be significant factors according to chi-square analysis, whereas pT, pN, metastasis, clinical stage, and TSPAN5 expression were significant according to Cox regression analysis. In order to prove the usefulness of TSPAN5, which is overexpressed in patients with metastatic CRC, as a biomarker, proliferation, migration, invasion, and tumorigenicity were examined using cell lines inhibited using small interfering RNA. The evaluations confirmed that TSPAN5 suppression, in turn, suppressed proliferation, migration, invasion, and tumorigenesis, which are characteristic of cancer cells. Therefore, the evaluation of TSPAN5 expression may help observe the prognosis of CRC and determine an appropriate treatment method for patients with CRC.
Collapse
Affiliation(s)
- Sanghyun Roh
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea (S.K.)
| | - Sooyoun Kim
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea (S.K.)
| | - Inpyo Hong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea (S.K.)
| | - Minho Lee
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea (S.K.)
| | - Han Jo Kim
- Department of Oncology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Tae Sung Ahn
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Dong Hyun Kang
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Hyoung Jong Kwak
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea
| | - Chang-Jin Kim
- Research Institute of Clinical Medicine, Woori Madi Medical Center, 111 Baekjedae-ro, Wansan-gu, Jeonju 55082, Jeollabuk-do, Republic of Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, 31 Soonchunhyang 6 gil, Dongnam-gu, Cheonan 31151, Chungcheongnam-do, Republic of Korea (S.K.)
- Correspondence: ; Tel.: +82-41-413-5049; Fax: +92-41-570-2546
| |
Collapse
|
4
|
Deng Y, Cai S, Shen J, Peng H. Tetraspanins: Novel Molecular Regulators of Gastric Cancer. Front Oncol 2021; 11:702510. [PMID: 34222025 PMCID: PMC8250138 DOI: 10.3389/fonc.2021.702510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is the fourth and fifth most common cancer worldwide in men and women, respectively. However, patients with an advanced stage of gastric cancer still have a poor prognosis and low overall survival rate. The tetraspanins belong to a protein superfamily with four hydrophobic transmembrane domains and 33 mammalian tetraspanins are ubiquitously distributed in various cells and tissues. They interact with other membrane proteins to form tetraspanin-enriched microdomains and serve a variety of functions including cell adhesion, invasion, motility, cell fusion, virus infection, and signal transduction. In this review, we summarize multiple utilities of tetraspanins in the progression of gastric cancer and the underlying molecular mechanisms. In general, the expression of TSPAN8, CD151, TSPAN1, and TSPAN4 is increased in gastric cancer tissues and enhance the proliferation and invasion of gastric cancer cells, while CD81, CD82, TSPAN5, TSPAN9, and TSPAN21 are downregulated and suppress gastric cancer cell growth. In terms of cell motility regulation, CD9, CD63 and CD82 are metastasis suppressors and the expression level is inversely associated with lymph node metastasis. We also review the clinicopathological significance of tetraspanins in gastric cancer including therapeutic targets, the development of drug resistance and prognosis prediction. Finally, we discuss the potential clinical value and current limitations of tetraspanins in gastric cancer treatments, and provide some guidance for future research.
Collapse
Affiliation(s)
- Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Cai
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Xie Q, Guo H, He P, Deng H, Gao Y, Dong N, Niu W, Liu T, Li M, Wang S, Wu Y, Li J. Tspan5 promotes epithelial-mesenchymal transition and tumour metastasis of hepatocellular carcinoma by activating Notch signalling. Mol Oncol 2021; 15:3184-3202. [PMID: 33955149 PMCID: PMC8564648 DOI: 10.1002/1878-0261.12980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/08/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide due to a high rate of tumour metastasis and disease recurrence. In physiological conditions, tetraspanins interact with specific partner proteins in tetraspanin-enriched microdomains and regulate their subcellular localization and function. However, the function of Tspan5 in pathological processes, particularly in cancer biology and its clinical significance, are still unclear. Here, we describe that a high expression of Tspan5 is significantly associated with some clinicopathological features including invasive length, vascular invasion, clinical stage and poor overall survival of HCC patients. Alterations of Tspan5 expression by lentivirus transductions in HCC cells demonstrated that Tspan5 promotes wound healing and cell migration in vitro and tumour metastasis of HCC cells in vivo. Mechanistic studies revealed that Tspan5 promoted cell migration and tumour metastasis by increasing the enzymatic maturation of ADAM10 and activating Notch signalling via the increase of the cleavage of the Notch1 receptor catalysed by the γ-secretase complex. Activation of Notch signalling by Tspan5 was shown further to enhance the epithelial-mesenchymal transition (EMT) and actin skeleton rearrangement of tumour cells. In clinical HCC samples, Tspan5 expression is strongly correlated with many key molecules acting in Notch signalling and EMT, highlighting the role of Tspan5 in the regulation of Notch signalling, EMT and tumour metastasis of HCC. Our findings provide new insights into the mechanism of tumour metastasis and disease progression of HCC and may facilitate the development of novel clinical intervention strategies against HCC.
Collapse
Affiliation(s)
- Qian Xie
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Huiling Guo
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Peirong He
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Huan Deng
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yanjun Gao
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Ningning Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Wenbo Niu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Ming Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Suihai Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Ji‐Liang Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education InstitutesSchool of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- Wenzhou Medical University Eye Hospital and School of Biomedical EngineeringChina
- Cancer Research CentreUniversity of Chinese Academy of Sciences Wenzhou InstituteChina
- Institute of Translational and Stratified MedicineUniversity of Plymouth Faculty of Medicine and DentistryUK
| |
Collapse
|
6
|
TSPAN8 as a Novel Emerging Therapeutic Target in Cancer for Monoclonal Antibody Therapy. Biomolecules 2020; 10:biom10030388. [PMID: 32138170 PMCID: PMC7175299 DOI: 10.3390/biom10030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.
Collapse
|
7
|
He P, Hu P, Yang C, He X, Shao M, Lin Y. Reduced expression of CENP-E contributes to the development of hepatocellular carcinoma and is associated with adverse clinical features. Biomed Pharmacother 2020; 123:109795. [PMID: 31881483 DOI: 10.1016/j.biopha.2019.109795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/17/2023] Open
Abstract
Human kinesin centromere-associated protein E (CENP-E), one of spindle checkpoint proteins, has been identified as a tumor suppressor in several types of cancer, however, its role in hepatocarcinogenesis remains unknown. Here we investigated the role of CENP-E in human hepatocellular carcinoma (HCC) employing HCC cell lines (Hep3B, SMMC7721, and QGY7701), animal models, and patient's clinical samples and data. We demonstrated that down-regulation of CENP-E by CENP-E-silencing shRNAs significantly promoted HCC proliferation/growth both in vitro and in vivo. Further studies found that CENP-E suppressed the proliferation of HCC cells by halting cell cycle progression at the G1-S phase and accelerating cell apoptosis. Analyses of HCC patient samples and clinical data revealed that CENP-E was significantly down-regulated in HCC tissues and low CENP-E expression was significantly associated with patient's adverse clinicopathological features: poor prognosis, advanced TNM stage, metastasis, and larger tumor size. Multivariate analysis indicated that CENP-E was an independent prognostic factor predicting outcomes of advanced HCC patients. Our data suggest that loss of CENP-E contributes to HCC development and is strongly associated with adverse HCC clinical pathology. Thus, CENP-E could be a novel target for new treatments and a useful prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Peirong He
- The Geriatric Ward, General Hospital of Guangzhou Military Command, Guangzhou, PR China
| | - Penghui Hu
- Department of Oncology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, PR China; Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Chaohao Yang
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xingxiang He
- Department of Gastroenterology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Ming Shao
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, PR China.
| | - Yiguang Lin
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China; School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
8
|
Yang LW, Wu XJ, Liang Y, Ye GQ, Che YC, Wu XZ, Zhu XJ, Fan HL, Fan XP, Xu JF. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Mol Carcinog 2020; 59:447-461. [PMID: 32096299 DOI: 10.1002/mc.23167] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Effective therapeutic targets for triple-negative breast cancer (TNBC), a special type of breast cancer (BC) with rapid metastasis and poor prognosis, are lacking, especially for patients with chemotherapy resistance. Decitabine (DCA) is a Food and Drug Administration-approved DNA methyltransferase inhibitor that has been proven effective for the treatment of tumors. However, its antitumor effect in cancer cells is limited by multidrug resistance. Cancer stem cells (CSCs), which are thought to act as seeds during tumor formation, regulate tumorigenesis, metastasis, and drug resistance through complex signaling. Our previous study found that miR-155 is upregulated in BC, but whether and how miR-155 regulates DCA resistance is unclear. In this study, we demonstrated that miR-155 was upregulated in CD24- CD44+ BC stem cells (BCSCs). In addition, the overexpression of miR-155 increased the number of CD24- CD44+ CSCs, DCA resistance and tumor clone formation in MDA-231 and BT-549 BC cells, and knockdown of miR-155 inhibited DCA resistance and stemness in BCSCs in vitro. Moreover, miR-155 induced stemness and DCA resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5). We further confirmed that overexpression of TSPAN5 abrogated the effect of miR-155 in promoting stemness and DCA resistance in BC cells. Our data show that miR-155 increases stemness and DCA resistance in BC cells by targeting TSPAN5. These data provide a therapeutic strategy and mechanistic basis for future possible clinical applications targeting the miR-155/TSPAN5 signaling axis in the treatment of TNBC.
Collapse
Affiliation(s)
- La-Wei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xian-Jin Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yi Liang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guang-Qing Ye
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu-Chuang Che
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xue-Zhen Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiao-Jie Zhu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huo-Liang Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiang-Ping Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
9
|
Sidahmed-Adrar N, Ottavi JF, Benzoubir N, Ait Saadi T, Bou Saleh M, Mauduit P, Guettier C, Desterke C, Le Naour F. Tspan15 Is a New Stemness-Related Marker in Hepatocellular Carcinoma. Proteomics 2019; 19:e1900025. [PMID: 31390680 DOI: 10.1002/pmic.201900025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second cause of cancer-related deaths worldwide. A clearer understanding of the molecular mechanisms underlying tumor growth and invasiveness remains crucial for developing new therapies. Here, the expression of tetraspanins, a family of plasma membrane organizers involved in tumor progression, has been addressed. Integrative approaches combining transcriptomics and bioinformatics allow demonstrating the induced and heterogeneous expression of Tspan15 in HCC. Tspan15 positive tumors exhibit signatures related to hepatic progenitor cells as well as recurrence of cancer. Immunohistochemistry experiments confirm Tspan15 expression in the subset of HCC expressing stemness-related markers such as EpCAM and Cytokeratin-19. Functional networks reveal that most of these genes expressed in correlation to Tspan15 support cell proliferation. Furthermore, Tspan15 overexpression in the hepatoma cell line HepG2 significantly increases cell proliferation. A quantitative proteomic analysis of the secretome reveals a higher abundance of the protein connective tissue growth factor (CTGF), a pleiotropic matricellular signaling protein. Proteomic profiling of Tspan15 complexes allows identifying numerous membrane proteins including several growth factor receptors. Finally, Tspan15 increases ERK1/2 phosphorylation that directly controls CTGF expression and secretion. In conclusion, Tspan15 is a new stemness-related marker in HCC which exhibits high potential of tumor growth and recurrence.
Collapse
Affiliation(s)
- Nazha Sidahmed-Adrar
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Jean-François Ottavi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Nassima Benzoubir
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Taous Ait Saadi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Mohamed Bou Saleh
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Philippe Mauduit
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, Unité 1197, Villejuif, F-94800, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,AP-HP Hôpital Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - Christophe Desterke
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| |
Collapse
|
10
|
Guo XB, Zhang XC, Chen P, Ma LM, Shen ZQ. miR‑378a‑3p inhibits cellular proliferation and migration in glioblastoma multiforme by targeting tetraspanin 17. Oncol Rep 2019; 42:1957-1971. [PMID: 31432186 PMCID: PMC6775804 DOI: 10.3892/or.2019.7283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and patients with this disease tend to have poor clinical outcome. MicroRNAs (miRs) are important regulators of a number of key pathways implicated in tumor pathogenesis. Recently, the expression of miR‑378 was shown to be dysregulated in several different types of cancer, including gastric cancer, colorectal cancer and oral carcinoma. Additional studies have demonstrated that miR‑378 may serve as a potential therapeutic target against human breast cancer. However, the underlying mechanisms and potential targets of miR‑378a‑3p involved in GBM remain unknown. The aim of the present of was to determine the effects of miR‑378a‑3p and its potential targets. Tetraspanin 17 (TSPAN17) is involved in the neoplastic events in GBM and is a member of the tetraspanin family of proteins. The tetraspanins are involved in the regulation of cell growth, migration and invasion of several different types of cancer cell lines, and may potentially act as an oncogene associated with GBM pathology. The results of the present study showed that high miR‑378a‑3p and low TSPAN17 expression levels were associated with improved survival in patients with GBM. Additionally, high levels of TSPAN17 were linked to the poor prognosis of patients with GBM aged 50‑60, larger tumor sizes (≥5 cm) and an advanced World Health Organization stage. TSPAN17 was identified and confirmed as a direct target of miR‑378a‑3p using a luciferase reporter assay in human glioma cell lines. Overexpression of miR‑378a‑3p in either of U87MG or MT‑330 cells decreased the expression of TSPAN17, promoted apoptosis and decreased proliferation, migration and invasion. Overexpression of TSPAN17 attenuated the aforementioned effects induced by miR‑378a‑3p overexpression. The present study indicated that miR‑378a‑3p suppresses the progression of GBM by reducing TSPAN17 expression, and may thus serve as a potential therapeutic target for treating patients with GBM.
Collapse
Affiliation(s)
- Xiao-Bing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Chao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Li-Mei Ma
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
11
|
Abstract
The study was conducted to investigate the diagnostic performance of serum LIM homeobox transcription factor 1 alpha (LMX1A) in patients with gastric cancer (GC).The serum level of LMX1A in GC, benign, and healthy groups was measured using quantitative real time PCR (qRT-PCR) and compared with the student t test. The associations of serum LMX1A levels with clinical parameters were analyzed with chi-square test. The diagnostic value of serum LMX1A in GC was evaluated by receiver operating characteristic (ROC) curve.The level of serum LMX1A in GC group (1.309 ± 0.553) was significantly lower than that in the benign group (2.174 ± 0.676) and healthy group (2.598 ± 0.826) (P < .01 for both). The decreased level of LMX1A was associated with large tumor size (P = .009), positive lymph node metastasis (P = .027), and advanced TNM stages (P = .002). Receiver operating characteristic (ROC) analysis demonstrated that serum LMX1A could discriminate GC patients from the healthy individuals, with the area under the curve (AUC) of 0.889 (95% confidence interval [CI] = 0.838-0.938) combining with the sensitivity and specificity of 82.68% and 82.61%. Additionally, serum LMX1A also exhibited high accuracy in discriminating between GC patients and benign gastric disease cases (AUC = 0.842, 95% CI = 0.782-0.901), with the sensitivity of 81.89% and specificity of 72.41%.Serum LMX1A may be an effective biomarker for early detection of GC.
Collapse
Affiliation(s)
| | - Chen Li
- Molecular Testing Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| |
Collapse
|
12
|
Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget 2018; 9:36083-36101. [PMID: 30546829 PMCID: PMC6281426 DOI: 10.18632/oncotarget.26300] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation is utilized in the therapy of more than 50% of cancer patients. Unfortunately, many malignancies become resistant to radiation over time. We investigated the hypothesis that one method of a cancer cell's ability to survive radiation occurs through cellular communication via exosomes. Exosomes are cell-derived vesicles containing DNA, RNA, and protein. Three properties were analyzed: 1) exosome function, 2) exosome profile and 3) exosome uptake/blockade. To analyze exosome function, we show radiation-derived exosomes increased proliferation and enabled recipient cancer cells to survive radiation in vitro. Furthermore, radiation-derived exosomes increased tumor burden and decreased survival in an in vivo model. To address the mechanism underlying the alterations by exosomes in recipient cells, we obtained a profile of radiation-derived exosomes that showed expression changes favoring a resistant/proliferative profile. Radiation-derived exosomes contain elevated oncogenic miR-889, oncogenic mRNAs, and proteins of the proteasome pathway, Notch, Jak-STAT, and cell cycle pathways. Radiation-derived exosomes contain decreased levels of tumor-suppressive miR-516, miR-365, and multiple tumor-suppressive mRNAs. Ingenuity pathway analysis revealed the most represented networks included cell cycle, growth/survival. Upregulation of DNM2 correlated with increased exosome uptake. To analyze the property of exosome blockade, heparin and simvastatin were used to inhibit uptake of exosomes in recipient cells resulting in inhibited induction of proliferation and cellular survival. Because these agents have shown some success as cancer therapies, our data suggest their mechanism of action could be limiting exosome communication between cells. The results of our study identify a novel exosome-based mechanism that may underlie a cancer cell's ability to survive radiation.
Collapse
|
13
|
Hu P, Chen H, McGowan EM, Ren N, Xu M, Lin Y. Assessment of FGFR1 Over-Expression and Over-Activity in Lung Cancer Cells: A Toolkit for Anti-FGFR1 Drug Screening. Hum Gene Ther Methods 2018; 29:30-43. [PMID: 29281903 DOI: 10.1089/hgtb.2017.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Penghui Hu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Eileen M McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Nina Ren
- Guangdong Online Hospital Clinic, Guangdong 2nd Provincial People's Hospital, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
14
|
Gong H, Wen H, Zhu X, Lian Y, Yang X, Qian Z, Zhu J. High expression of long non-coding RNA ZEB1-AS1 promotes colorectal cancer cell proliferation partially by suppressing p15 expression. Tumour Biol 2017; 39:1010428317705336. [PMID: 28618933 DOI: 10.1177/1010428317705336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aims to investigate the function of long non-coding RNA ZEB1-AS1, reveal its molecular mechanism in colorectal cancer cell growth, and evaluate its clinical significance in colorectal cancer patients. ZEB1-AS1 has reported in the development of several cancers, but the biological role of it in colorectal cancer has not been discussed. In this report, ZEB1-AS1 expression level was measured with quantitative real-time polymerase chain reaction in 63 pairs of colorectal cancer tissues and paired adjacent non-tumor colorectal tissues. The relationship between ZEB1-AS1 expression and overall survival was analyzed by virtue of Kaplan-Meier analysis. Subsequently, small interfering RNA or lentivirus vector-mediated lncRNA ZEB1-AS1 was transfected into colorectal cancer cell lines. Cell viability and apoptosis were examined. Later, nude mouse transplantation experiment was conducted to evaluate the effect of ZEB1-AS1 on colorectal cancer development in vivo. It turns out that ZEB1-AS1 is upregulated in colorectal cancer tissues and its expression is significantly associated with overall survival rate and recurrence-free survival. Upregulation of ZEB1-AS1 colorectal cancer promotes cell proliferation and inhibits cell apoptosis. In addition, cell cycle inhibitory protein p15 participates in the oncogenic function of ZEB1-AS1. Collectively, ZEB1-AS1 has asignificant effect on colorectal cancer pathological process and serves as a valuable prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Huangbo Gong
- 1 The Second Clinical Medical College of Nanjing Medical University, Nanjing, China.,2 Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wen
- 2 Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhui Zhu
- 3 Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Yifan Lian
- 1 The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaojun Yang
- 2 Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuyin Qian
- 2 Pancreas Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- 3 Huadong Medical Institute of Biotechniques, Nanjing, China.,4 Department of Pathology, Key Laboratory of Antibody Technique of the Ministry of Health, Nanjing Medical University (NJMU), Nanjing, China
| |
Collapse
|
15
|
Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem Soc Trans 2017; 45:937-44. [PMID: 28687716 DOI: 10.1042/bst20160296] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
By interacting directly with partner proteins and with one another, tetraspanins organize a network of interactions referred to as the tetraspanin web. ADAM10 (A Disintegrin And Metalloprotease 10), an essential membrane-anchored metalloprotease that cleaves off the ectodomain of a large variety of cell surface proteins including cytokines, adhesion molecules, the precursor of the β-amyloid peptide APP or Notch, has emerged as a major component of the tetraspanin web. Recent studies have shown that ADAM10 associates directly with all members (Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33) of a subgroup of tetraspanins having eight cysteines in the large extracellular domain and referred to as TspanC8. All TspanC8 regulate ADAM10 exit from the endoplasmic reticulum, but differentially regulate its subsequent trafficking and its function, and have notably a different impact on Notch signaling. TspanC8 orthologs in invertebrates also regulate ADAM10 trafficking and Notch signaling. It may be possible to target TspanC8 tetraspanins to modulate in a tissue- or substrate-restricted manner ADAM10 function in pathologies such as cardiovascular diseases, cancer or Alzheimer's disease.
Collapse
|
16
|
Mao XM, Fu QR, Li HL, Zheng YH, Chen SM, Hu XY, Chen QX, Chen QH. Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer. Tumour Biol 2017; 39:1010428317694320. [DOI: 10.1177/1010428317694320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qi-Rui Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hua-Liang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Hui Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shu-Ming Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiong-Hua Chen
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|