1
|
Huang WL, Hsu YC, Luo CW, Chang SJ, Hung YH, Lai CY, Yang YT, Chen YZ, Wu CC, Chen FM, Hou MF, Pan MR. Targeting the CDK7-MDK axis to suppresses irinotecan resistance in colorectal cancer. Life Sci 2024; 353:122914. [PMID: 39004275 DOI: 10.1016/j.lfs.2024.122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
AIMS Colorectal cancer (CRC) remains a major global health issue, with metastatic cases presenting poor prognosis despite advances in chemotherapy and targeted therapy. Irinotecan, a key drug for advanced CRC treatment, faces challenges owing to the development of resistance. This study aimed to understand the mechanisms underlying irinotecan resistance in colorectal cancer. MAIN METHODS We created a cell line resistant to irinotecan using HT29 cells. These resistant cells were utilized to investigate the role of the CDK7-MDK axis. We employed bulk RNA sequencing, conducted in vivo experiments with mice, and analyzed patient tissues to examine the effects of the CDK7-MDK axis on the cellular response to irinotecan. KEY FINDINGS Our findings revealed that HT29 cells resistant to irinotecan, a crucial colorectal cancer medication, exhibited significant phenotypic and molecular alterations compared to their parental counterparts, including elevated stem cell characteristics and increased levels of cytokines and drug resistance proteins. Notably, CDK7 expression was substantially higher in these resistant cells, and targeting CDK7 effectively decreased their survival and tumor growth, enhancing irinotecan sensitivity. RNA-seq analysis indicated that suppression of CDK7 in irinotecan-resistant HT29 cells significantly reduced Midkine (MDK) expression. Decreased CDK7 and MDK levels, achieved through siRNA and the CDK7 inhibitor THZ1, enhanced the sensitivity of resistant HT29 cells to irinotecan. SIGNIFICANCE Our study sheds light on how CDK7 and MDK influence irinotecan resistance in colorectal and highlights the potential of MDK-targeted therapies. We hypothesized that irinotecan sensitivity and overall treatment efficacy would improve by inhibiting MDK. This finding encourages a careful yet proactive investigation of MDK as a therapeutic target to enhance outcomes in colorectal cancer patients.
Collapse
Affiliation(s)
- Wei-Lun Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yin-Chou Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan; Department of Cosmetic Science, Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Shu-Jyuan Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Hsuan Hung
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chiao-Ying Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Tzu Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Zi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan; Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| |
Collapse
|
2
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
3
|
Kahraman D, İlhan S, Cangi S, Işık AF, Bağcı C, Sağlam E. Comparative assessment of primary cancer cell culture techniques and cellular composition analysis in non-small cell lung cancer. Pathol Res Pract 2023; 248:154580. [PMID: 37307622 DOI: 10.1016/j.prp.2023.154580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Preclinical models are required to study individual therapy responses to improve all cancer treatments, particularly non-small cell lung cancer (NSCLC). Patient-derived explants (PDEs) culture model is of great importance in terms of the possibility of tumor cell culture with the microenvironment, and the development of molecular mechanisms and personalized treatment methods. In our study, primary tumor culture with microenvironment was performed using different methods from tumor tissues obtained from 51 patients with NSCLC. To identify the most efficient method, mechanical, enzymatic, and tumor fluid techniques were applied. While the malignant cell rate was > 95% in 3 of these cases, the cancer-associated fibroblasts (CAF) microenvironment was high in 46 (80-94%) and low in 2 (1-79%). Subtyping of cells obtained from culture was performed using the light microscope and, if necessary, additional immunohistochemical markers. Consequently, using different techniques, here we successfully performed primary cell culture from patients with NSCLC with microenvironment. Depending on the cell type and culture conditions, proliferation rate was shown to be altered.
Collapse
Affiliation(s)
- Demet Kahraman
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Sedat İlhan
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| | - Sibel Cangi
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Feridun Işık
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey; Department of Thoracic Surgery, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Cansu Bağcı
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| | - Ebru Sağlam
- Respiratory Diseases and Respiratory Surgery Research and Practice Center, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
4
|
Djekidel M, Alsadi R, Abi Akl M, Bouhali O, O'Doherty J. Tumor microenvironment and fibroblast activation protein inhibitor (FAPI) PET: developments toward brain imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1183471. [PMID: 39355017 PMCID: PMC11440979 DOI: 10.3389/fnume.2023.1183471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2024]
Abstract
Fibroblast activation protein (FAP) is a type-II membrane bound glycoprotein specifically expressed by activated fibroblasts almost exclusively in pathological conditions including arthritis, fibrosis and cancer. FAP is overexpressed in cancer-associated fibroblasts (CAFs) located in tumor stroma, and is known to be involved in a variety of tumor-promoting activities such as angiogenesis, proliferation, resistance to chemotherapy, extracellular matrix remodeling and immunosuppression. In most cancer types, higher FAP expression is associated with worse clinical outcomes, leading to the hypothesis that FAP activity is involved in cancer development, cancer cell migration, and cancer spread. Recently, various high selectivity FAP inhibitors (FAPIs) have been developed and subsequently used for positron emission tomography (PET) imaging of different pathologies. Considering the paucity of widely available and especially mainstream reliable radioligands in brain cancer PET imaging, and the poor survival rates of patients with certain types of brain cancer such as glioblastoma, FAPI-PET represents a major development in enabling the detection of small primary or metastatic lesions in the brain due to its biological characteristics and low background accumulation. In this work, we aim to summarize the potential avenues for use of FAPI-PET, from the basic biological processes to oncologic imaging and with a main focus on brain imaging.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Department of Radiology/Nuclear Medicine, Northwell Health, New York, NY, United States
| | - Rahaf Alsadi
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
| | - Maya Abi Akl
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Othmane Bouhali
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jim O'Doherty
- Siemens Medical Solutions, Malvern, PA, United States
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States
- Radiography and Diagnostic Imaging, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Ren X, Fan Y, Shi D, Liu Y. Expression and significance of IL-6 and IL-8 in canine mammary gland tumors. Sci Rep 2023; 13:1302. [PMID: 36693957 PMCID: PMC9873921 DOI: 10.1038/s41598-023-28389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Mammary gland tumors are the most common malignant diseases which seriously threaten the health of women and female dogs. There is a lack of an effective tumor marker which can effectively assist in the early diagnosis, and prognosis of mammary gland tumors in veterinary clinical medicine. IL-6, and IL-8 as immunosuppressive factors may stimulate tumor cells growth, contribute to loco-regional relapse and metastasis that might be utilized as a marker for immunity status and monitoring of the course of tumor. The present study aimed to investigate the expression of serum/tissue IL-6, IL-8 and IL-10 in canine mammary gland tumors using Enzyme linked immunosorbent assay(ELISA), Western blot and Immunohistochemistry assay(IHC) to determine whether it is associated with tumor progression. The results showed that levels of IL-6, IL-8 and IL-10 in serum were higher in malignant tumor group than that in benign tumor and control group; the expression levels of IL-6 and IL-8 were significantly elevated in grade III than in grade I and II and was related to metastasis. Likewise, IL-6 and IL-8 were also highly expressed in malignant tumor tissues. Elevated expression of IL-6 was associated with histopathological grade and metastases in malignant tumors. Moreover, high expression of IL-6 occurred in the Basal-like subtypes whereas high expression of IL-8 occurred in the Luminal B subtypes. The results of this study indicated that changes of IL-6 and IL-8 in the tumor microenvironments were closely related to the diseases status and may be used as a potential diagnostic or biomarker in canine mammary gland tumors.
Collapse
Affiliation(s)
- Xiaoli Ren
- Zhengzhou City Key Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.,Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuying Fan
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Dongmei Shi
- Zhengzhou City Key Laboratory of Animal Nutritional Metabolic and Poisoning Diseases, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yun Liu
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
7
|
Epithelial-Mesenchymal Plasticity Induced by Discontinuous Exposure to TGFβ1 Promotes Tumour Growth. BIOLOGY 2022; 11:biology11071046. [PMID: 36101425 PMCID: PMC9312510 DOI: 10.3390/biology11071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In this manuscript, we used a non-genetically manipulated EMT/MET cell line model to demonstrate that epithelial mesenchymal plasticity occurring in normal cells generates co-existing phenotypically and functionally divergent cell subpopulations which result in fast growing tumours in vivo. Abstract Transitions between epithelial and mesenchymal cellular states (EMT/MET) contribute to cancer progression. We hypothesize that EMT followed by MET promotes cell population heterogeneity, favouring tumour growth. We developed an EMT model by on and off exposure of epithelial EpH4 cells (E-cells) to TGFβ1 that mimics phenotypic EMT (M-cells) and MET. We aimed at understanding whether phenotypic MET is accompanied by molecular and functional reversion back to epithelia by using RNA sequencing, immunofluorescence (IF), proliferation, wound healing, focus formation and mamosphere formation assays as well as cell xenografts in nude mice. Phenotypic reverted epithelial cells (RE-cells) obtained after MET induction presented epithelial morphologies and proliferation rates resembling E cells. However, the RE transcriptomic profile and IF staining of epithelial and mesenchymal markers revealed a uniquely heterogeneous mixture of cell subpopulations with a high self-renewal ability. RE cell heterogeneity was stably maintained for long periods after TGFβ1 removal both in vitro and in large tumours derived from the nude mice. Overall, we show that phenotypic reverted epithelial cells (RE cells) do not return to the molecular and functional epithelial state and present mesenchymal features related to aggressiveness and cellular heterogeneity that favour tumour growth in vivo. This work strengthens epithelial cell reprogramming and cellular heterogeneity fostered by inflammatory cues as a tumour growth-promoting factor in vivo.
Collapse
|
8
|
Lotsberg ML, Røsland GV, Rayford AJ, Dyrstad SE, Ekanger CT, Lu N, Frantz K, Stuhr LEB, Ditzel HJ, Thiery JP, Akslen LA, Lorens JB, Engelsen AST. Intrinsic Differences in Spatiotemporal Organization and Stromal Cell Interactions Between Isogenic Lung Cancer Cells of Epithelial and Mesenchymal Phenotypes Revealed by High-Dimensional Single-Cell Analysis of Heterotypic 3D Spheroid Models. Front Oncol 2022; 12:818437. [PMID: 35530312 PMCID: PMC9076321 DOI: 10.3389/fonc.2022.818437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
The lack of inadequate preclinical models remains a limitation for cancer drug development and is a primary contributor to anti-cancer drug failures in clinical trials. Heterotypic multicellular spheroids are three-dimensional (3D) spherical structures generated by self-assembly from aggregates of two or more cell types. Compared to traditional monolayer cell culture models, the organization of cells into a 3D tissue-like structure favors relevant physiological conditions with chemical and physical gradients as well as cell-cell and cell-extracellular matrix (ECM) interactions that recapitulate many of the hallmarks of cancer in situ. Epidermal growth factor receptor (EGFR) mutations are prevalent in non-small cell lung cancer (NSCLC), yet various mechanisms of acquired resistance, including epithelial-to-mesenchymal transition (EMT), limit the clinical benefit of EGFR tyrosine kinase inhibitors (EGFRi). Improved preclinical models that incorporate the complexity induced by epithelial-to-mesenchymal plasticity (EMP) are urgently needed to advance new therapeutics for clinical NSCLC management. This study was designed to provide a thorough characterization of multicellular spheroids of isogenic cancer cells of various phenotypes and demonstrate proof-of-principle for the applicability of the presented spheroid model to evaluate the impact of cancer cell phenotype in drug screening experiments through high-dimensional and spatially resolved imaging mass cytometry (IMC) analyses. First, we developed and characterized 3D homotypic and heterotypic spheroid models comprising EGFRi-sensitive or EGFRi-resistant NSCLC cells. We observed that the degree of EMT correlated with the spheroid generation efficiency in monocultures. In-depth characterization of the multicellular heterotypic spheroids using immunohistochemistry and high-dimensional single-cell analyses by IMC revealed intrinsic differences between epithelial and mesenchymal-like cancer cells with respect to self-sorting, spatiotemporal organization, and stromal cell interactions when co-cultured with fibroblasts. While the carcinoma cells harboring an epithelial phenotype self-organized into a barrier sheet surrounding the fibroblasts, mesenchymal-like carcinoma cells localized to the central hypoxic and collagen-rich areas of the compact heterotypic spheroids. Further, deep-learning-based single-cell segmentation of IMC images and application of dimensionality reduction algorithms allowed a detailed visualization and multiparametric analysis of marker expression across the different cell subsets. We observed a high level of heterogeneity in the expression of EMT markers in both the carcinoma cell populations and the fibroblasts. Our study supports further application of these models in pre-clinical drug testing combined with complementary high-dimensional single-cell analyses, which in turn can advance our understanding of the impact of cancer-stroma interactions and epithelial phenotypic plasticity on innate and acquired therapy resistance in NSCLC.
Collapse
Affiliation(s)
- Maria L. Lotsberg
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gro V. Røsland
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Austin J. Rayford
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- BerGenBio, Bergen, Norway
| | - Sissel E. Dyrstad
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Camilla T. Ekanger
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ning Lu
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kirstine Frantz
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Linda E. B. Stuhr
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Henrik J. Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Gustave Roussy Cancer Campus, UMR 1186, Inserm, Université Paris-Saclay, Villejuif, France
| | - Lars A. Akslen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Section for Pathology, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - James B. Lorens
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Agnete S. T. Engelsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022; 345:811-818. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
Active targeting strategy is adopted in nanomedicine for cancer treatment. Personalizing the nanomedicine in accordance with patients' omics, under the precision medicine platform, is met with challenges in targeting ligand and matrix material selection at nanoformulation stage. The past 5-year literatures show that the nanoparticulate targeting ligand and matrix material are not selected based upon the cancer omics profiles of patients. The expression of cancer cellular target receptors and metabolizing enzymes is primarily influenced by age, gender, race/ethnic group and geographical origin of patients. The personalized perspective of a nanomedicine cannot be realised with premature digestion of matrix and targeting ligand by specific metabolizing enzymes that are overexpressed by the patients, and unmatched targeting ligand to the majority of cell surface receptors overexpressed in cancer. Omics analysis of individual metabolizing enzyme and cancer cell surface receptor expressed in cancer facilitates targeting ligand and matrix material selection in nanomedicine development.
Collapse
|
10
|
Kurisu N, Kaminade T, Eguchi M, Ishigami I, Mizuguchi H, Sakurai F. Oncolytic reovirus-mediated killing of mouse cancer-associated fibroblasts. Int J Pharm 2021; 610:121269. [PMID: 34748806 DOI: 10.1016/j.ijpharm.2021.121269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses, which mediate tumor cell-specific infection, resulting in efficient tumor cell killing, have attracted much attention as a novel class of anti-cancer biopharmaceutical agents. Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that strongly supports the growth, survival, and metastasis of tumor cells, suggesting that CAFs would have influence to the antitumor effects of oncolytic viruses; however, it remains to be fully evaluated whether oncolytic viruses affect the viabilities and properties of CAFs following treatment. Oncolytic reovirus, which is a non-enveloped virus that contains 10-segmented double-stranded RNA genome, shows efficient tumor cell lysis without apparent cytotoxicity to normal cells and has been tested worldwide in clinical trials against various types of tumors. In this study, we demonstrated that reovirus exhibited cytotoxicity against mouse primary CAFs isolated from subcutaneous tumors, but not against tail-tip fibroblasts. Infection with reovirus resulted in activation of caspase 3 and up-regulation of apoptosis-related gene expression, indicating that reovirus induced apoptosis of mouse primary CAFs. Intratumoral administration of reovirus induced apoptosis of mouse CAFs in the tumor. Taken together, these results indicate that reovirus has the potential to mediate antitumor effects by killing not only cancer cells but also CAFs.
Collapse
Affiliation(s)
- Nozomi Kurisu
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tadataka Kaminade
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Maho Eguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ikuho Ishigami
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:7429. [PMID: 34299049 PMCID: PMC8303169 DOI: 10.3390/ijms22147429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Mengyao Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Tissues and Tumor Microenvironment (TME) in 3D: Models to Shed Light on Immunosuppression in Cancer. Cells 2021; 10:cells10040831. [PMID: 33917037 PMCID: PMC8067689 DOI: 10.3390/cells10040831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022] Open
Abstract
Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.
Collapse
|
13
|
Kar F, Kacar S, Hacioglu C, Kanbak G, Sahinturk V. Concanavalin A induces apoptosis in a dose-dependent manner by modulating thiol/disulfide homeostasis in C6 glioblastoma cells. J Biochem Mol Toxicol 2021; 35:e22742. [PMID: 33604990 DOI: 10.1002/jbt.22742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Glioma is the most common brain tumor. C6 rat glioblastoma cells provide the possibility to the scientist to study brain cancer. Concanavalin A (Con A) has a lot of antitumoral effects, especially over oxidative stress. In the present study, it was aimed to decide the impacts of various doses of Con A on C6 glioblastoma cells regarding cytotoxicity, thiol/disulfide homeostasis, apoptosis, and inflammation. We detected the cytotoxic activity of Con A (from 7.8 to 500 µg/ml) in C6 cells by utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and determined the toxic concentration of Con A. Once the optimal doses were found, the thiol-disulfide homeostasis, levels of total antioxidant and oxidant status (TAS and TOS), malondialdehyde (MDA) and glutathione (GSH), pro-inflammatory cytokines as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), apoptotic proteins as cytochrome c (CYCS), and caspase 3 (CASP3) were measured. Apoptotic and morphological changes in the C6 cells were examined with an inverted microscope and flow cytometry technique. Dose-dependent Con A triggered oxidative damage in the C6 cells, affecting the inflammatory pathway, so reducing proliferation with apoptotic proteins and morphological changes. But especially, Con A increased disulfide formation by disrupting the thiol/disulfide balance in C6 cells. This study revealed that Con A, known as carbohydrate-binding protein, generated oxidative damage, inflammation, and apoptosis in a dose-dependent manner by modulating thiol/disulfide homeostasis in C6 glioblastoma cells.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Services and Techniques, Vocational School of Health Services, Kütahya Health Science University, Kütahya, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
14
|
Abou Khouzam R, Brodaczewska K, Filipiak A, Zeinelabdin NA, Buart S, Szczylik C, Kieda C, Chouaib S. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies. Front Immunol 2021; 11:613114. [PMID: 33552076 PMCID: PMC7854546 DOI: 10.3389/fimmu.2020.613114] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 01/19/2023] Open
Abstract
The environmental and metabolic pressures in the tumor microenvironment (TME) play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition and activation. Hypoxia triggers a cascade of events that promote tumor growth, enhance resistance to the anti-tumor immune response and instigate tumor angiogenesis. During growth, the developing angiogenesis is pathological and gives rise to a haphazardly shaped and leaky tumor vasculature with abnormal properties. Accordingly, aberrantly vascularized TME induces immunosuppression and maintains a continuous hypoxic state. Normalizing the tumor vasculature to restore its vascular integrity, should hence enhance tumor perfusion, relieving hypoxia, and reshaping anti-tumor immunity. Emerging vascular normalization strategies have a great potential in achieving a stable normalization, resulting in mature and functional blood vessels that alleviate tumor hypoxia. Biomarkers enabling the detection and monitoring of tumor hypoxia could be highly advantageous in aiding the translation of novel normalization strategies to clinical application, alone, or in combination with other treatment modalities, such as immunotherapy.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Filipiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Nagwa Ahmed Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Stephanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Cezary Szczylik
- Centre of Postgraduate Medical Education, Department of Oncology, European Health Centre, Otwock, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
15
|
Castillo SP, Keymer JE, Marquet PA. Do microenvironmental changes disrupt multicellular organisation with ageing, enacting and favouring the cancer cell phenotype? Bioessays 2020; 43:e2000126. [PMID: 33184914 DOI: 10.1002/bies.202000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a singular cellular state, the emergence of which destabilises the homeostasis reached through the evolution to multicellularity. We present the idea that the onset of the cellular disobedience to the metazoan functional and structural architecture, known as the cancer phenotype, is triggered by changes in the cell's external environment that occur with ageing: what ensues is a breach of the social contract of multicellular life characteristic of metazoans. By integrating old ideas with new evidence, we propose that with ageing the environmental information that maintains a multicellular organisation is eroded, rewiring internal processes of the cell, and resulting in an internal shift towards an ancestral condition resulting in the pseudo-multicellular cancer phenotype. Once that phenotype emerges, a new local social contract is built, different from the homeostatic one, leading to tumour formation and the foundation of a novel local ecosystem.
Collapse
Affiliation(s)
- Simon P Castillo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile
| | - Juan E Keymer
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
| | - Pablo A Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ecología y Biodiversidad de Chile (IEB) Chile, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile.,Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
16
|
Lotsberg ML, Rayford A, Thiery JP, Belleggia G, D'Mello Peters S, Lorens JB, Chouaib S, Terry S, Engelsen AST. Decoding cancer's camouflage: epithelial-mesenchymal plasticity in resistance to immune checkpoint blockade. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:832-853. [PMID: 35582229 PMCID: PMC8992561 DOI: 10.20517/cdr.2020.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal plasticity (EMP) of cancer cells contributes to cancer cell heterogeneity, and it is well established that EMP is a critical determinant of acquired resistance to cancer treatment modalities including radiation therapy, chemotherapy, and targeted therapies. Here, we aimed to explore how EMP contributes to cancer cell camouflage, allowing an ever-changing population of cancer cells to pass under the radar of our immune system and consequently compromise the effect of immune checkpoint blockade therapies. The ultimate clinical benefit of any combination regimen is evidenced by the sum of the drug-induced alterations observed in the variety of cellular populations composing the tumor immune microenvironment. The finely-tuned molecular crosstalk between cancer and immune cells remains to be fully elucidated, particularly for the spectrum of malignant cells along the epithelial to mesenchymal axis. High-dimensional single cell analyses of specimens collected in ongoing clinical studies is becoming a key contributor to our understanding of these interactions. This review will explore to what extent targeting EMP in combination with immune checkpoint inhibition represents a promising therapeutic avenue within the overarching strategy to reactivate a halting cancer-immunity cycle and establish a robust host immune response against cancer cells. Therapeutic strategies currently in clinical development will be discussed.
Collapse
Affiliation(s)
- Maria L Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
- Equal contribution
| | - Austin Rayford
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
- BerGenBio ASA, Jonas Lies vei 91, Bergen 5009, Norway
- Equal contribution
| | - Jean Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif 94805, France
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore 119228, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, A-STAR, Singapore, Singapore 138673, Singapore
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou 510005, China
| | - Giuliana Belleggia
- School of Medicine, Clinical Skills Assessment Program, University of Connecticut, Farmington, CT 06030, USA
| | - Stacey D'Mello Peters
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
| | - James B Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
- BerGenBio ASA, Jonas Lies vei 91, Bergen 5009, Norway
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif 94805, France
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Stephane Terry
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif 94805, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Agnete S T Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen 5009, Norway
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
17
|
Reinhard J, Wagner N, Krämer MM, Jarocki M, Joachim SC, Dick HB, Faissner A, Kakkassery V. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21:ijms21124322. [PMID: 32560557 PMCID: PMC7352646 DOI: 10.3390/ijms21124322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase β/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| | - Natalie Wagner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Miriam M. Krämer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Marvin Jarocki
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| |
Collapse
|
18
|
Dominiak A, Chełstowska B, Olejarz W, Nowicka G. Communication in the Cancer Microenvironment as a Target for Therapeutic Interventions. Cancers (Basel) 2020; 12:E1232. [PMID: 32422889 PMCID: PMC7281160 DOI: 10.3390/cancers12051232] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed of multiple cells, such as non-cancerous fibroblasts, adipocytes, immune and vascular cells, as well as signal molecules and mediators. Tumor cells recruit and reprogram other cells to produce factors that maintain tumor growth. Communication between cancerous and surrounding cells is a two-way process and engages a diverse range of mechanisms that, in consequence, can lead to rapid proliferation, metastasis, and drug resistance, or can serve as a tumors-suppressor, e.g., through tumor-immune cell interaction. Cross-talk within the cancer microenvironment can be direct by cell-to-cell contact via adhesion molecules, electrical coupling, and passage through gap junctions, or indirect through classical paracrine signaling by cytokines, growth factors, and extracellular vesicles. Therapeutic approaches for modulation of cell-cell communication may be a promising strategy to combat tumors. In particular, integrative approaches targeting tumor communication in combination with conventional chemotherapy seem reasonable. Currently, special attention is paid to suppressing the formation of open-ended channels as well as blocking exosome production or ablating their cargos. However, many aspects of cell-to-cell communication have yet to be clarified, and, in particular, more work is needed in regard to mechanisms of bidirectional signal transfer. Finally, it seems that some interactions in TEM can be not only cancer-specific, but also patient-specific, and their recognition would help to predict patient response to therapy.
Collapse
Affiliation(s)
- Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Beata Chełstowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, 04-140 Warsaw, Poland;
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Li X, Zhang Y, Walana W, Zhao F, Li F, Luo F. GDC-0941 and CXCL8 (3-72) K11R/G31P combination therapy confers enhanced efficacy against breast cancer. Future Oncol 2020; 16:911-921. [PMID: 32285685 DOI: 10.2217/fon-2020-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Herein is presented the combined effect of PI3K inhibitor (GDC-0941) and CXCR1/2 analogue (G31P) in breast cancer. Materials & methods: Breast cancer cell lines and xenograft model were employed to test the efficacy of the combination therapy. Results: GDC-0941+G31P treatment substantially inhibited multiplication of all the breast cancer cell lines used in this study (BT474, HCC1954 and 4T1). Even though single therapies caused a meaningful S-phase cell cycle arrest, the inhibition effect was more potent with the combined treatment. Similarly, enhanced apoptosis accompanied GDC-0941+G31P treatment. Furthermore, the migration ability of the breast cancer cell lines were significantly curtailed by the combination therapy compared with the single treatments. Conclusion: The findings suggest that combination treatment involving PI3K inhibitor and CXCR1/2 analogue (G31P) could be a potent therapeutic option for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaodong Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, PR China
| | - Yuanyue Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, PR China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, PR China.,Department of Clinical Microbiology, University for Development Studies, Tamale, Ghana
| | - Feng Zhao
- College of Basic Medical Science, Dalian Medical University, #9 West Section Lvshun South Road, Dalian, 116044, Liaoning, PR China
| | - Fang Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, PR China
| | - Fuwen Luo
- Department of Acute Abdominal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, PR China
| |
Collapse
|
20
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
21
|
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X, Sun Z. Roles of circRNAs in the tumour microenvironment. Mol Cancer 2020; 19:14. [PMID: 31973726 PMCID: PMC6977266 DOI: 10.1186/s12943-019-1125-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) constitutes the area surrounding the tumour during its development and has been demonstrated to play roles in cancer-related diseases through crosstalk with tumour cells. Circular RNAs (circRNAs) are a subpopulation of endogenous noncoding RNAs (ncRNAs) that are ubiquitously expressed in eukaryotes and have multiple biological functions in the regulation of cancer onset and progression. An increasing number of studies have shown that circRNAs participate in the multifaceted biological regulation of the TME. However, details on the mechanisms involved have remained elusive until now. In this review, we analyse the effects of circRNAs on the TME from various perspectives, including immune surveillance, angiogenesis, hypoxia, matrix remodelling, exo-circRNAs and chemoradiation resistance. Currently, the enormous potential for circRNA use in targeted therapy and as noninvasive biomarkers have drawn our attention. We emphasize the prospect of targeting circRNAs as an essential strategy to regulate TME, overcome cancer resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiuge Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, Li J, Lou J, Zhou H, Wang J, Xu G, Yu Z, Song Y, Chen X. Nanoparticle Conjugation of Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Development and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905233. [PMID: 31814271 DOI: 10.1002/smll.201905233] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. The prognosis of HCC remains very poor; thus, an effective treatment remains urgent. Herein, a type of nanomedicine is developed by conjugating Fe@Fe3 O4 nanoparticles with ginsenoside Rg3 (NpRg3), which achieves an excellent coupling effect. In the dimethylnitrosamine-induced HCC model, NpRg3 application significantly prolongs the survival of HCC mice. Further research indicates that NpRg3 application significantly inhibits HCC development and eliminates HCC metastasis to the lung. Notably, NpRg3 application delays HCC-induced ileocecal morphology and gut microbial alterations more than 12 weeks during HCC progression. NpRg3 administration elevates the abundance of Bacteroidetes and Verrucomicrobia, but decreases Firmicutes. Twenty-nine predicted microbial gene functions are enriched, while seven gene functions are reduced after NpRg3 administration. Moreover, the metabolomics profile presents a significant progression during HCC development, but NpRg3 administration corrects tumor-dominant metabolomics. NpRg3 administration decreases 3-indolepropionic acid and urea, but elevates free fatty acids. Importantly, NpRg3 application remodels the unbalanced correlation networks between gut microbiota and metabolism during HCC therapy. In conclusion, nanoparticle conjugation of ginsenoside Rg3 inhibits HCC development and metastasis via the remodeling of unbalanced gut microbiota and metabolism in vivo, providing an antitumor therapy strategy.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Liangjie Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xiaoxiong Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junmei Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujun Song
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| |
Collapse
|
23
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Ercolano G, De Cicco P, Rubino V, Terrazzano G, Ruggiero G, Carriero R, Kunderfranco P, Ianaro A. Knockdown of PTGS2 by CRISPR/CAS9 System Designates a New Potential Gene Target for Melanoma Treatment. Front Pharmacol 2019; 10:1456. [PMID: 31920649 PMCID: PMC6915044 DOI: 10.3389/fphar.2019.01456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas9 has become a powerful method to engineer genomes and to activate or to repress genes expression. As such, in cancer research CRISPR/Cas9 technology represents an efficient tool to dissect mechanisms of tumorigenesis and to discover novel targets for drug development. Here, we employed the CRISPR/Cas9 technology for studying the role of prostaglandin-endoperoxide synthase 2 (PTGS2) in melanoma development and progression. Melanoma is the most aggressive form of skin cancer with a median survival of less than 1 year. Although oncogene-targeted drugs and immune checkpoint inhibitors have demonstrated a significant success in improving overall survival in patients, related toxicity and emerging resistance are ongoing challenges. Gene therapy appears to be an appealing option to enhance the efficacy of currently available melanoma therapeutics leading to better patient prognosis. Several gene therapy targets have been identified and have proven to be effective against melanoma cells. Particularly, PTGS2 is frequently expressed in malignant melanomas and its expression significantly correlates with poor survival in patients. In this study we investigated on the effect of ptgs2 knockdown in B16F10 murine melanoma cells. Our results show that reduced expression of ptgs2 in melanoma cells: i) inhibits cell proliferation, migration, and invasiveness; ii) modulates immune response by impairing myeloid derived suppressor cell differentiation; iii) reduces tumor development and metastasis in vivo. Collectively, these findings indicate that ptgs2 could represent an ideal gene to be targeted to improve success rates in the development of new and highly selective drugs for melanoma treatment.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Department of Science, University of Basilicata, Potenza, Italy
| | - Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Department of Science, University of Basilicata, Potenza, Italy
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Carriero
- Bioinformatic Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Joshi A, Tandel N, Tyagi P, Dalai SK, Bisen PS, Tyagi RK. RNA-loaded dendritic cells: more than a tour de force in cancer therapeutics. Immunotherapy 2019; 11:1129-1147. [PMID: 31390917 DOI: 10.2217/imt-2019-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A wide array of therapeutic strategies has been implemented against cancers, yet their clinical benefit is limited. The lack of clinical efficacy of the conventional treatment options might be due to the inept immune competency of the patients. Dendritic cells (DCs) have a vital role in initiating and directing immune responses and have been frequently used as delivery vehicles in clinical research. The recent clinical data suggest the potential use of DCs pulsed with nucleic acid, especially with RNA holds a great potential as an immunotherapeutic measure with compare to other cancer therapeutics. This review mainly deals with the DCs and their role in transfection with RNA in cancer immunotherapy.
Collapse
Affiliation(s)
- Aishwarya Joshi
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Priyanka Tyagi
- Department of Biological Sciences, School of Basic and Applied Sciences, GD Goenka University, Gurugram 122103, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujarat, India
| | - Prakash S Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India
| | - Rajeev K Tyagi
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| |
Collapse
|
26
|
Song J, Wang W, Wang Y, Qin Y, Wang Y, Zhou J, Wang X, Zhang Y, Wang Q. Epithelial-mesenchymal transition markers screened in a cell-based model and validated in lung adenocarcinoma. BMC Cancer 2019; 19:680. [PMID: 31296175 PMCID: PMC6624955 DOI: 10.1186/s12885-019-5885-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Background Re-capture of the differences between tumor and normal tissues observed at the patient level in cell cultures and animal models is critical for applications of these cancer-related differences. The epithelial-mesenchymal transition (EMT) process is essential for tumor migratory and invasive capabilities. Although plenty of EMT markers are revealed, molecular features during the early stages of EMT are poorly understood. Methods A cell-based model to induce lung cell (A549) EMT using conditioned medium of in vitro cancer activated fibroblast (WI38) was established. High-throughput sequencing methods, including RNA-seq and miRNA-seq, and advanced bioinformatics methods were used to explore the transcriptome profile transitions accompanying the progression of EMT. We validated our findings with experimental techniques including transwell and immunofluorescence assay, as well as the TCGA data. Results We have constructed an in vitro cell model to mimic the EMT in patients. We discovered that several new transcription factors were among the early genes (3 h) to respond to cancer micro-environmental cues which could play critical roles in triggering further EMT signals. The early EMT markers also included genes encoding membrane transporters and blood coagulation function. Three of the nine-examined early EMT hallmark genes, GALNT6, SPARC and HES7, were up-regulated specifically in the early stages of lung adenocarcinoma (LUAD) and confirmed by TCGA patient transcriptome data. In addition, we showed that miR-3613, a regulator of EGFR pathway genes, was constantly repressed during EMT progress and indicative of an epithelial miRNA marker. Conclusions The CAF-stimulated EMT cell model may recapture some of the molecular changes during EMT progression in clinical patients. The identified early EMT hallmark genes GALNT6, SPARC and HES7and miR-3613 provide new markers and therapeutic targets for LUAD for the further clinical diagnosis and drug screening. Electronic supplementary material The online version of this article (10.1186/s12885-019-5885-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Wenqing Wang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Yongxin Qin
- Department of Critical Care Medicine, The First Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Yingzi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Jian Zhou
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Xuelian Wang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Building 9-4, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China.
| |
Collapse
|
27
|
Nguyen EV, Pereira BA, Lawrence MG, Ma X, Rebello RJ, Chan H, Niranjan B, Wu Y, Ellem S, Guan X, Wu J, Skhinas JN, Cox TR, Risbridger GP, Taylor RA, Lister NL, Daly RJ. Proteomic Profiling of Human Prostate Cancer-associated Fibroblasts (CAF) Reveals LOXL2-dependent Regulation of the Tumor Microenvironment. Mol Cell Proteomics 2019; 18:1410-1427. [PMID: 31061140 PMCID: PMC6601211 DOI: 10.1074/mcp.ra119.001496] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer, cancer-associated fibroblasts (CAF) exhibit contrasting biological properties to non-malignant prostate fibroblasts (NPF) and promote tumorigenesis. Resolving intercellular signaling pathways between CAF and prostate tumor epithelium may offer novel opportunities for research translation. To this end, the proteome and phosphoproteome of four pairs of patient-matched CAF and NPF were characterized to identify discriminating proteomic signatures. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a hyper reaction monitoring data-independent acquisition (HRM-DIA) workflow. Proteins that exhibited a significant increase in CAF versus NPF were enriched for the functional categories "cell adhesion" and the "extracellular matrix." The CAF phosphoproteome exhibited enhanced phosphorylation of proteins associated with the "spliceosome" and "actin binding." STRING analysis of the CAF proteome revealed a prominent interaction hub associated with collagen synthesis, modification, and signaling. It contained multiple collagens, including the fibrillar types COL1A1/2 and COL5A1; the receptor tyrosine kinase discoidin domain-containing receptor 2 (DDR2), a receptor for fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an enzyme that promotes collagen crosslinking. Increased activity and/or expression of LOXL2 and DDR2 in CAF were confirmed by enzymatic assays and Western blotting analyses. Pharmacological inhibition of CAF-derived LOXL2 perturbed extracellular matrix (ECM) organization and decreased CAF migration in a wound healing assay. Further, it significantly impaired the motility of co-cultured RWPE-2 prostate tumor epithelial cells. These results indicate that CAF-derived LOXL2 is an important mediator of intercellular communication within the prostate tumor microenvironment and is a potential therapeutic target.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Brooke A Pereira
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Mitchell G Lawrence
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Xiuquan Ma
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Richard J Rebello
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Howard Chan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Birunthi Niranjan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Yunjian Wu
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Stuart Ellem
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; **School of Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
| | - Xiaoqing Guan
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianmin Wu
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Joanna N Skhinas
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Thomas R Cox
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia;; ¶¶St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gail P Risbridger
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‖‖Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Renea A Taylor
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‡‡‡Physiology, Monash University, Clayton, Australia
| | - Natalie L Lister
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Roger J Daly
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology,.
| |
Collapse
|
28
|
Hoarau-Véchot J, Touboul C, Halabi N, Blot-Dupin M, Lis R, Abi Khalil C, Rafii S, Rafii A, Pasquier J. Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J Transl Med 2019; 17:194. [PMID: 31182109 PMCID: PMC6558713 DOI: 10.1186/s12967-019-1942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background One main challenge in ovarian cancer rests on the presence of a relapse and an important metastatic disease, despite extensive surgical debulking and chemotherapy. The difficulty in containing metastatic cancer is partly due to the heterotypic interaction of tumor and its microenvironment. In this context, evidence suggests that endothelial cells (EC) play an important role in ovarian tumor growth and chemoresistance. Here, we studied the role of tumor endothelium on ovarian cancer cells (OCCs). Methods We evaluated the effect of activated endothelial cells on ovarian cancer cell proliferation and resistance to chemotherapy and investigated the survival pathways activated by endothelial co-culture. Results The co-culture between OCCs and E4+ECs, induced an increase of OCCs proliferation both in vitro and in vivo. This co-culture induced an increase of Notch receptors expression on OCC surface and an increase of Jagged 1 expression on E4+ECs surface and activation of survival pathways leading to chemoresistance by E4+ECs. Conclusion The targeting of aberrant NOTCH signaling could constitute a strategy to disrupt the pro-tumoral endothelial niche.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Cyril Touboul
- INSERM U955, Equipe 7, Créteil, France.,Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Raphael Lis
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA. .,Department of Gynecologic Oncology, Hospital Foch, Surresnes, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,INSERM U955, Equipe 7, Créteil, France.
| |
Collapse
|
29
|
The Interplay between MicroRNAs and Cellular Components of Tumour Microenvironment (TME) on Non-Small-Cell Lung Cancer (NSCLC) Progression. J Immunol Res 2019; 2019:3046379. [PMID: 30944831 PMCID: PMC6421779 DOI: 10.1155/2019/3046379] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Cellular components of the tumour microenvironment (TME) are recognized to regulate the hallmarks of cancers including tumour proliferation, angiogenesis, invasion, and metastasis, as well as chemotherapeutic resistance. The linkage between miRNA, TME, and the development of the hallmarks of cancer makes miRNA-mediated regulation of TME a potential therapeutic strategy to complement current cancer therapies. Despite significant advances in cancer therapy, lung cancer remains the deadliest form of cancer among males in the world and has overtaken breast cancer as the most fatal cancer among females in more developed countries. Therefore, there is an urgent need to develop more effective treatments for NSCLC, which is the most common type of lung cancer. Hence, this review will focus on current literature pertaining to antitumour or protumourigenic effects elicited by nonmalignant stromal cells of TME in NSCLC through miRNA regulation as well as current status and future prospects of miRNAs as therapeutic agents or targets to regulate TME in NSCLC.
Collapse
|
30
|
Kinoshita R, Sato H, Yamauchi A, Takahashi Y, Inoue Y, Sumardika IW, Chen Y, Tomonobu N, Araki K, Shien K, Tomida S, Torigoe H, Namba K, Kurihara E, Ogoshi Y, Murata H, Yamamoto KI, Futami J, Putranto EW, Ruma IMW, Yamamoto H, Soh J, Hibino T, Nishibori M, Kondo E, Toyooka S, Sakaguchi M. exSSSRs (extracellular S100 soil sensor receptors)-Fc fusion proteins work as prominent decoys to S100A8/A9-induced lung tropic cancer metastasis. Int J Cancer 2018; 144:3138-3145. [PMID: 30365872 DOI: 10.1002/ijc.31945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Within the "seed and soil" theory of organ tropic cancer metastasis is a growing compilation of evidence that S100A8/A9 functions as a soil signal that attracts cancer cells to certain organs, which prove beneficial to their growth. S100A8/A9-sensing receptors including Toll-like receptor 4 (TLR4), advanced glycation end products (RAGE), and also important receptors we recently succeeded in identifying (EMMPRIN, NPTNβ, MCAM, and ALCAM) have the potential to become promising therapeutic targets. In our study, we prepared extracellular regions of these novel molecules and fused them to human IgG2-Fc to extend half-life expectancy, and we evaluated the anti-metastatic effects of the purified decoy proteins on metastatic cancer cells. The purified proteins markedly suppressed S100A8/A9-mediated lung tropic cancer metastasis. We hence expect that our novel biologics may become a prominent medicine to prevent cancer metastasis in clinical settings through cutting the linkage between "seed and soil".
Collapse
Affiliation(s)
- Rie Kinoshita
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sato
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Yuta Takahashi
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Gunma, Japan
| | - I Wayan Sumardika
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Youyi Chen
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Departments of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidejiro Torigoe
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kei Namba
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisuke Kurihara
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Ogoshi
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichiro Futami
- Departments of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Endy Widya Putranto
- Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - I Made Winarsa Ruma
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Hiromasa Yamamoto
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichi Soh
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Nishibori
- Departments of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and dental Sciences, Niigata, Japan
| | - Shinichi Toyooka
- Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Departments of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
31
|
Lin YH, Wu MH, Yeh CT, Lin KH. Long Non-Coding RNAs as Mediators of Tumor Microenvironment and Liver Cancer Cell Communication. Int J Mol Sci 2018; 19:ijms19123742. [PMID: 30477236 PMCID: PMC6321423 DOI: 10.3390/ijms19123742] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is an important concept that defines cancer development not only through tumor cells themselves but also the surrounding cellular and non-cellular components, including stromal cells, blood vessels, infiltrating inflammatory cells, cancer stem cells (CSC), cytokines, and growth factors, which act in concert to promote tumor cell survival and metastasis. Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies worldwide. Poor prognosis is largely attributable to the high rate of tumor metastasis, highlighting the importance of identifying patients at risk in advance and developing novel therapeutic targets to facilitate effective intervention. Long non-coding RNAs (lncRNA) are a class of non-protein coding transcripts longer than 200 nucleotides frequently dysregulated in various cancer types, which have multiple functions in widespread biological processes, including proliferation, apoptosis, metastasis, and metabolism. lncRNAs are involved in regulation of the tumor microenvironment and reciprocal signaling between cancer cells. Targeting of components of the tumor microenvironment or cancer cells has become a considerable focus of therapeutic research and establishing the effects of different lncRNAs on this network should aid in the development of effective treatment strategies. The current review provides a summary of the essential properties and functional roles of known lncRNAs associated with the tumor microenvironment in HCC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
32
|
Cai Y, Yan P, Zhang G, Yang W, Wang H, Cheng X. Long non-coding RNA TP73-AS1 sponges miR-194 to promote colorectal cancer cell proliferation, migration and invasion via up-regulating TGFα. Cancer Biomark 2018; 23:145-156. [PMID: 30010111 DOI: 10.3233/cbm-181503] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is the 3rd most common cancer worldwide. Recently, long non-coding RNAs (lncRNAs) were found to be critical modulators in the CRC progression. The aim of this study is to investigate the potential roles of lncRNA P73 antisense RNA 1T (TP73-AS1) in CRC development and progression. METHODS Quantitative real-time PCR (qRT-PCR) was performed to determine relevant gene expression levels; western blot was performed to determine protein expression levels; CCK-8, colony formation, wound healing and Transwell invasion assays were used to determined CRC cell proliferation, migration and invasion; in vivo tumor growth was assessed in xenograft mice model. RESULTS TP73-AS1 was up-regulated in both CRC tissues and CRC cell lines. Overexpression of TP73-AS1 was associated with metastasis and advanced clinical stages in CRC patients. Overexpression of TP73-AS1 promoted CRC cell growth, proliferation, migration and invasion in vitro; and knockdown of TP73-AS1 significantly inhibited CRC cell growth, proliferation, migration and invasion in vitro as well as tumor growth in vivo. Bioinformatics analysis and luciferase reporter assay indicated that TP73-AS1 could bind directly with miR-194, and TP73-AS1 negatively regulated the expression of miR-194 in CRC cells. Further study indicated that miR-194 negatively regulated the downstream target of transforming growth factor alpha (TGFα) via targeting its 3' untranslated region, and TP73-AS1 positively regulated the expression of TGFα in CRC cells. Moreover, overexpression of miR-194 suppressed CRC cell proliferation and invasion, and attenuated the effects of TP73-AS1 overexpression on CRC cell proliferation and invasion. Silence of TGFα inhibited CRC cell proliferation and invasion, and also reversed the effects of TP73-AS1 overexpression on CRC cell proliferation and invasion. CONCLUSIONS this study demonstrated that TP73-AS1 regulated CRC progression by acting as a competitive endogenous RNA to sponge miR-194 to modulate the expression of TGFα.
Collapse
Affiliation(s)
- Yu Cai
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Pu Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ge Zhang
- Department of General Surgery, Shaanxi Sengong Hospital, Xi'an, Shaanxi, China
| | - Wenqi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haiping Wang
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Cheng
- Department of General Surgery, The Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| |
Collapse
|
33
|
USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun 2018; 9:3996. [PMID: 30266897 PMCID: PMC6162259 DOI: 10.1038/s41467-018-06178-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
We have previously demonstrated that USP24 is involved in cancer progression. Here, we found that USP24 expression is upregulated in M2 macrophages and lung cancer cells. Conditioned medium from USP24-knockdown M2 macrophages decreases the migratory and chemotactic activity of lung cancer cells and the angiogenic properties of human microvascular endothelial cell 1 (HMEC-1). IL-6 expression is significantly decreased in USP24-knockdown M2 macrophages and lung cancer cells, and IL-6-replenished conditioned medium restores the migratory, chemotactic and angiogenetic properties of the cells. USP24 stabilizes p300 and β-TrCP to increase the levels of histone-3 acetylation and NF-κB, and decreases the levels of DNMT1 and IκB, thereby increasing IL-6 transcription in M2 macrophages and lung cancer cells, results in cancer malignancy finally. IL-6 has previously been a target for cancer drug development. Here, we provide direct evidence to support that USP24 promotes IL-6 expression, which might be beneficial for cancer therapy. USP24 has previously been reported to be involved in cancer progression. Here, the authors demonstrate that USP24 stabilizes p300 and β-TrCP to increase the levels of NF-κB and histone-3 acetylation, and decrease DNMT1 and IκB levels which promotes IL-6 expression in M2 macrophages and lung cancer cells.
Collapse
|
34
|
Prognostic factors of metastatic testicular non-seminomatous germ cell tumors after chemotherapy. JOURNAL OF CANCER RESEARCH AND PRACTICE 2018. [DOI: 10.1016/j.jcrpr.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Usman MW, Gao J, Zheng T, Rui C, Li T, Bian X, Cheng H, Liu P, Luo F. Macrophages confer resistance to PI3K inhibitor GDC-0941 in breast cancer through the activation of NF-κB signaling. Cell Death Dis 2018; 9:809. [PMID: 30042442 PMCID: PMC6057974 DOI: 10.1038/s41419-018-0849-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023]
Abstract
The PI3K pathway is one of the most dysregulated signaling pathways in epithelial cancers and has become an attractive therapeutic target under active preclinical and clinical development. However, recent clinical trial studies revealed that blockade of PI3K activity in advanced cancer often leads to the development of resistance and relapse of the diseases. Intense efforts have been made to elucidate resistance mechanisms and identify rational drug combinations with PI3K inhibitors in solid tumors. In the current study, we found that PI3K inhibition by GDC-0941 increased macrophage infiltration and induced the expression of macrophage-associated cytokines and chemokines in the mouse 4T1 breast tumor model. Using the in vitro co-culture system, we showed that the presence of macrophages led to the activation of NF-κB signaling in 4T1 tumor cells, rendering tumor cells resistant to PI3K inhibition by GDC-0941. Furthermore, we found that Aspirin could block the activation of NF-κB signaling induced by PI3K inhibition, and combined use of GDC-0941 and Aspirin resulted in attenuated cell growth and enhanced apoptosis of 4T1 cells in the in vitro co-culture system with the presence of macrophages. Consistently, the combination treatment also effectively reduced tumor burden, macrophage infiltration and pulmonary metastasis in in vivo 4T1 breast tumor model. Together, our results suggested macrophages in microenvironment may contribute to the resistance of breast cancer cells to PI3K inhibition and reveal a new combination paradigm to improve the efficacy of PI3K-targeted therapy.
Collapse
Affiliation(s)
- Muhammad Waqas Usman
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jing Gao
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Tiezheng Zheng
- Department of Physiology, Institute of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chunhua Rui
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Ting Li
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xing Bian
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Hailing Cheng
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Pixu Liu
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China. .,College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Fuwen Luo
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
36
|
Prabhu L, Wei H, Chen L, Demir Ö, Sandusky G, Sun E, Wang J, Mo J, Zeng L, Fishel M, Safa A, Amaro R, Korc M, Zhang ZY, Lu T. Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers. Oncotarget 2018; 8:39963-39977. [PMID: 28591716 PMCID: PMC5522311 DOI: 10.18632/oncotarget.18102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) are notoriously challenging for treatment. Hyperactive nuclear factor κB (NF-κB) is a common culprit in both cancers. Previously, we discovered that protein arginine methyltransferase 5 (PRMT5) methylated and activated NF-κB. Here, we show that PRMT5 is highly expressed in PDAC and CRC. Overexpression of PRMT5 promoted cancer progression, while shRNA knockdown showed an opposite effect. Using an innovative AlphaLISA high throughput screen, we discovered a lead compound, PR5-LL-CM01, which exhibited robust tumor inhibition effects in both cancers. An in silico structure prediction suggested that PR5-LL-CM01 inhibits PRMT5 by binding with its active pocket. Importantly, PR5-LL-CM01 showed higher anti-tumor efficacy than the commercial PRMT5 inhibitor, EPZ015666, in both PDAC and CRC. This study clearly highlights the significant potential of PRMT5 as a therapeutic target in PDAC and CRC, and establishes PR5-LL-CM01 as a promising basis for new drug development in the future.
Collapse
Affiliation(s)
- Lakshmi Prabhu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Han Wei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lan Chen
- Chemical Genomics Core Facility, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica Mo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lifan Zeng
- Chemical Genomics Core Facility, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ahmad Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rommie Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
37
|
Neumann T, Canli Ö, Greten FR. Canonical NF-κB signaling in myeloid cells promotes lung metastasis in a mouse breast cancer model. Oncotarget 2018; 9:16775-16791. [PMID: 29682184 PMCID: PMC5908285 DOI: 10.18632/oncotarget.24697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
An inflammatory tumor microenvironment is a common characteristic of solid tumors. It is the result of a complex interplay between tumor cells, tumor infiltrating immune cells and other stromal cells. Myeloid cells in the tumor microenvironment are considered major drivers of tumor progression and metastasis and increased numbers of these cells are associated with poor prognosis in various cancer patients. The transcription factor NF-κB is considered the master regulator of inflammatory gene expression and immune cell function. Its activation in various cells of the tumor microenvironment contributes essentially to tumorigenesis. In the present study, the role of canonical NF-κB signaling in myeloid cells in metastatic breast cancer was addressed by myeloid-specific deletion of Ikkβ in the MMTV polyoma middle T (PyMT) mouse model. Ikkβ deletion in myeloid cells did not affect primary mammary tumor growth but significantly reduced lung metastasis. While dissemination from the primary tumor was unaltered, myeloid-specific Ikkβ loss resulted in a strong up-regulation of pro-inflammatory genes and changes in immune cell populations in the lung, creating a tumor-suppressive microenvironment at the distant site. Thus, canonical NF-κB signaling in myeloid cells creates a permissive lung microenvironment that supports breast to lung metastasis.
Collapse
Affiliation(s)
- Tobias Neumann
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | - Özge Canli
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Lin Y, Ge X, Zhang X, Wu Z, Liu K, Lin F, Dai C, Guo W, Li J. Protocadherin-8 promotes invasion and metastasis via laminin subunit γ2 in gastric cancer. Cancer Sci 2018; 109:732-740. [PMID: 29325230 PMCID: PMC5834795 DOI: 10.1111/cas.13502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Growing evidence suggests that protocadherins (PCDH) play crucial roles in pathogenesis and progression of cancers, including gastric cancer (GC). Protocadherin‐8 (PCDH8) was previously reported to be involved in metastasis of GC, but functional studies yielded inconsistent results and the molecular mechanism remained unknown. The present study aimed to explore the clinical relevance, function and molecular mechanism of PCDH8 in GC. Data from the GEPIA and Kaplan–Meier plotter databases showed that high expression of PCDH8 was significantly correlated with poorer prognosis in GC. Ectopic expression of PCDH8 in GC cells promoted invasion and migration in vitro and metastasis in vivo, and knockdown of PCDH8 inhibited invasion and migration in vitro. RNA sequencing followed by gene set enrichment analysis found a remarkable enrichment in the extracellular matrix receptor interaction pathway, with the expression of laminin subunit γ2 (LAMC2) being significantly increased in the PCDH8‐overexpressing group. High expression of LAMC2 was significantly correlated to poor prognosis in GC in GEPIA database. Upregulation of LAMC2 following PCDH8 overexpression was further confirmed by immunohistochemistry in liver metastatic lesions of nude mice. To our knowledge, this is the first report of the metastasis‐enhancing property and molecular mechanism through upregulation of LAMC2 of PCDH8 in cancer. High expression of PCDH8 could be used as a biomarker for poor prognosis in clinical practice.
Collapse
Affiliation(s)
- Ying Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofei Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zheng Wu
- Department of Medical Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kaiyi Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengjuan Lin
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Congqi Dai
- Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, Zhang P, Zhu H, Xu N, Liang S. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget 2018; 7:71400-71416. [PMID: 27662663 PMCID: PMC5342087 DOI: 10.18632/oncotarget.12147] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/13/2016] [Indexed: 02/05/2023] Open
Abstract
The STC2 protein involves in carcinogenesis and progression of many cancers. It remains unclear how STC2 regulates the epithelial-mesenchymal transition (EMT) process and colorectal cancer (CRC) development. Here we systematically investigated STC2-activated early occurrence of EMT and CRC cell migration in vitro, clinical associations of STC2 with CRC development and patient survival. The secretion and expression level of STC2 were both greatly increased in EMT cells and CRC cells compared with the normal epithelial NCM460 cells. And the conditioned media from EMT cells stimulated epithelia and colon cancer cells to obtain EMT characteristics. STC2 overexpression promoted CRC cell growth and cell migration in vitro, and STC2 enhanced tumor growth in a mouse CRC-xenograft model. Corresponding to EMT marker expression changes, several critical signaling pathway molecules including pERK, pAKT, PI3K and Ras were remarkably increased either in NCM460 cells transfected with STC2 plasmids or in cells induced with exogenous STC2 protein. However blocking AKT-ERK signaling pathways attenuated STC2-activated EMT process. Furthermore the elevated STC2 expressions were also confirmed in 77 clinical tumor tissues and sera from CRC patients, and the increased STC2 in tumor tissues and sera correlated with tumor pathologic stage and poor survival for CRC patients. In conclusion, STC2 promotes CRC tumorigenesis and EMT progression through activating ERK/MEK and PI3K/AKT signaling pathways. STC2 protein is also a potential tumor biomarker for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Xiao Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P. R. China
| | - Hongxia Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, P. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100034, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
40
|
Su SP, Flashner-Abramson E, Klein S, Gal M, Lee RS, Wu J, Levitzki A, Daly RJ. Impact of the Anticancer Drug NT157 on Tyrosine Kinase Signaling Networks. Mol Cancer Ther 2018; 17:931-942. [DOI: 10.1158/1535-7163.mct-17-0377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022]
|
41
|
La Monica S, Cretella D, Bonelli M, Fumarola C, Cavazzoni A, Digiacomo G, Flammini L, Barocelli E, Minari R, Naldi N, Petronini PG, Tiseo M, Alfieri R. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines. J Exp Clin Cancer Res 2017; 36:174. [PMID: 29202823 PMCID: PMC5716361 DOI: 10.1186/s13046-017-0653-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification. METHODS The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines. The potential of overcoming osimertinib resistance with T-DM1 was tested in a PC9/HER2c1 xenograft model. RESULTS T-DM1 exerted an additive effect when combined with osimertinib in terms of inhibition of cell proliferation, cell death and ADCC induction in PC9, PC9-T790M and H1975 cell lines. Combining osimertinib and T-DM1 using different schedules in long-term growth experiments revealed that the appearance of osimertinib-resistance was prevented in PC9-T790M and delayed in H1975 cells when the two drugs were given together. By contrast, when osimertinib was followed by T-DM1 an antagonistic effect was observed on cell proliferation, cell death and resistance acquisition. In xenograft models, we demonstrated that HER-2 amplification was associated with osimertinib-resistance and that T-DM1 co-administration is a potential strategy to overcome this resistance. CONCLUSIONS Our data suggest that concomitant treatment with osimertinib and T-DM1 may be a promising therapeutic strategy for EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Roberta Minari
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Nadia Naldi
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
42
|
Jang S, Yayeh T, Leem YH, Park EM, Ito Y, Oh S. Concanavalin A Induces Cortical Neuron Apoptosis by Causing ROS Accumulation and Tyrosine Kinase Activation. Neurochem Res 2017; 42:3504-3514. [DOI: 10.1007/s11064-017-2398-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023]
|
43
|
Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep 2017; 7:8678. [PMID: 28819116 PMCID: PMC5561077 DOI: 10.1038/s41598-017-09062-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor (TGF)-β1 contributes to autocrine and paracrine functions in the tumor microenvironment (TME). The present study examined the effects of TGF-β1 crosstalk in TME and its role in mediating tumor formation and progression by targeted abrogation of TGF-β1 expression in metastatic cells in situ. Using species-specific primers, we found a significant increase in MMP-9 gene expression in the tumor-reactive stroma during late-stage metastasis in the lung. This effect was also confirmed in cancer-associated fibroblasts (CAFs) when co-cultured with the tumor cells. Knockdown of TGF-β1 expression in the tumor cells negatively affected matrix metalloproteinase (MMP)-9 gene expression. Fibroblasts, cultured in the presence of tumor cells with intact TGF-β1, showed a significant increase in proliferation rate, as well as expression of VEGF, bFGF, and SDF-1, which was not seen when TGF-β1 expression was abrogated in tumor cells. Absence of TGF-β1 in tumor cells also failed to result in myofibroblast differentiation. Co-implantation of CAFs and tumor cells with either intact TGF-β1 expression or devoid of TGF-β1 in vivo showed a significant increase in tumor growth kinetics in both cell types, suggesting a possible activation TGF-β receptor signaling in tumor cells in response to TGF-β from the TME.
Collapse
|
44
|
de Winde CM, Elfrink S, van Spriel AB. Novel Insights into Membrane Targeting of B Cell Lymphoma. Trends Cancer 2017; 3:442-453. [DOI: 10.1016/j.trecan.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/28/2022]
|
45
|
Kawasaki H, Saotome T, Usui T, Ohama T, Sato K. Regulation of intestinal myofibroblasts by KRas-mutated colorectal cancer cells through heparin-binding epidermal growth factor-like growth factor. Oncol Rep 2017; 37:3128-3136. [PMID: 28339087 DOI: 10.3892/or.2017.5520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
In colorectal cancer, gain-of-function mutations in KRas play a critical role in malignant transformation. Tumor growth in colorectal cancer is known to be promoted by the intestinal myofibroblasts (IMFs) that localize adjacent to the cancer cells, but the mechanisms of interaction between KRas-mutated cancer cells and the myofibroblasts remain unclear. Here, we investigated the effects of KRas-mutated cells on the behavior of myofibroblasts by using mouse primary IMFs and cells of an IMF cell line (LmcMF) and a mouse colon epithelial cell line (aMoC1). Conditioned medium (CM) was collected from aMoC1 cells overexpressing a control vector or KRasV12 vector (KRasV12-CM), and the effects of KRasV12-CM on IMFs were analyzed by performing proliferation assays, wound-healing assays, Boyden chamber assays, and western blotting. Whereas KRasV12-CM exerted little effect on the differentiation and proliferation of primary IMFs, the CM promoted migration of both primary IMFs and LmcMF cells. In KRasV12-overexpressing aMoC1 cells, mRNA expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) was higher than in mock-transfected aMoC1 cells, and HB-EGF promoted the migration of primary IMFs and LmcMF cells. Moreover, KRasV12-CM-induced IMF migration was suppressed by dacomitinib, an inhibitor of HB-EGF receptors. Notably, in LmcMF cells, both KRasV12-CM and HB-EGF activated extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK), whereas KRasV12-CM-induced migration of IMFs was suppressed following treatment with either an ERK inhibitor (FR180204) or a JNK inhibitor (SP600125). These results suggest that HB-EGF secreted from KRas-mutated colorectal cancer cells promotes IMF migration through ERK and JNK activation, which, in turn, could support cancer progression.
Collapse
Affiliation(s)
- Hideyoshi Kawasaki
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takuya Saotome
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
46
|
Ganapathy-Kanniappan S. Taming Tumor Glycolysis and Potential Implications for Immunotherapy. Front Oncol 2017; 7:36. [PMID: 28348977 PMCID: PMC5346534 DOI: 10.3389/fonc.2017.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Immune evasion and deregulation of energy metabolism play a pivotal role in cancer progression. Besides the coincidence in their historical documentation and concurrent recognition as hallmarks of cancer, both immune evasion and metabolic deregulation may be functionally linked as well. For example, the metabolic phenotype, particularly tumor glycolysis (aerobic glycolysis), impacts the tumor microenvironment (TME), which in turn acts as a major barrier for successful targeting of cancer by antitumor immune cells and other therapeutics. Similarly, in the light of recent research, it has been known that some of the immune sensitive antigens that are downregulated in cancer may also be restored or induced by cellular/metabolic stress. For instance, cancer cells downregulate the cell surface ligands such as MHC class I chain-related (MIC) protein-(A/B) that are normally upregulated in disease/pathological conditions. Noteworthy, the MHC class I chain-related protein A and B (MIC-A/B) are recognized by natural killer (NK) cells for immune elimination. Interestingly, MIC-A/B is stress inducible as demonstrated by oxidative stress and other cellular-stress factors. Consequently, stimulation of metabolic stress has also been shown to sensitize cancer cells to NK cell-mediated cytotoxicity. Taken together, data from recent reports imply that dysregulation of tumor glycolysis could facilitate induction of immune sensitive surface ligands leading to increased efficacy of antitumor immunotherapeutics. Nonetheless, dysregulated tumor glycolysis may also impact the TME and alter it from acidic, low pH into a therapeutically desirable TME that can enhance the effective infiltration of antitumor immune cells. In this mini-review, targeting tumor glycolysis has been discussed to evaluate its potential implications to enhance and/or facilitate anticancer immunity.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- Division of Interventional Radiology, Russell H. Morgan, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
47
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|