Akinniyi G, Akinboye AJ, Yang I, Lee JG. Plant proteins, peptides, and non-protein amino acids: Toxicity, sources, and analysis.
Heliyon 2024;
10:e34890. [PMID:
39145010 PMCID:
PMC11320209 DOI:
10.1016/j.heliyon.2024.e34890]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Plants have evolved various mechanisms to synthesize diverse range of substances that contribute to their survival against pests, pathogens, predators, and adverse environmental conditions. Although several plant metabolites possess therapeutic potential, some can be potentially harmful to human and animal health when consumed in large proportion. Proteins, peptides, and non-protein amino acids are products of plant biochemical pathways with proven beneficial and nutritional effects. Despite these benefits, the in vivo toxicities associated with certain plant-derived proteins, peptides, and non-protein amino acids pose a significant risk to humans and animals. Symptoms of poisoning include nausea, vomiting, diarrhea, hair and weight loss, goiter, cataracts, and infertility. Even though plant processing methods such as soaking and drying can reduce the amount of toxin contained in plants, complete riddance is often impossible. As such, food regulatory bodies need to prevent uncontrolled consumption of the listed and many other toxin-containing plant species to keep the public safe. For this purpose, this review collates crucial insights into the sources, and in vivo toxicity associated with certain plant-derived proteins, peptides, and non-protein amino acids that have the clear potential to adversely affect human health. Additionally, this review provides information on analytical methods suitable for the detection of these substances in plants.
Collapse