1
|
Stahlschmidt ZR. Warm and thermally variable incubation conditions reduce embryonic performance and carry over to influence hatchling tradeoffs. J Therm Biol 2024; 124:103946. [PMID: 39265502 DOI: 10.1016/j.jtherbio.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Animals' thermal sensitivities have long been characterized by thermal performance curves (TPCs) or reaction norms, and TPCs may predict animals' responses to climate change. Typically, TPCs are parameterized by measuring performance at a range of constant temperatures. Yet, animals encounter a range of thermal environments, and temperature variability is an aspect of climate change that may affect animals more than gradual warming. Daily temperature variability is particularly important for eggs in most taxa because they are highly sensitive to temperature and cannot behaviorally avoid stressful temperatures. Thus, the legacy of thermal conditions experienced during incubation may carryover to subsequent life stages. Here, I factorially manipulated mean temperature (20, 25, or 30 °C) and daily temperature range (DTR; ±0, 5, or 10 °C) during incubation for eggs of the variable field cricket (Gryllus lineaticeps) to integrate the role of DTR into the established paradigm of TPCs. Low DTR (±5 °C) was not generally costly, and it even improved hatchling starvation resistance (sensu hormesis). However, high DTR (±10 °C) reduced and delayed hatching at a warm mean temperature (30 °C). The effects of high DTR carried over to accelerate hatchling development at an expense to hatchling starvation resistance-therefore, thermal conditions during incubation can shape tradeoffs among important traits related to life history and stress tolerance later in life. In sum, animals may exhibit complex responses to their increasingly warmer, more thermally variable environments.
Collapse
|
2
|
Ma L, Wu DY, Wang Y, Hall JM, Mi CR, Xie HX, Tao WJ, Hou C, Cheng KM, Zhang YP, Wang JC, Lu HL, Du WG, Sun BJ. Collective effects of rising average temperatures and heat events on oviparous embryos. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14266. [PMID: 38578127 DOI: 10.1111/cobi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Yang Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Joshua M Hall
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jie Tao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kun-Ming Cheng
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ji-Chao Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Akashi H, Hasui D, Ueda K, Ishikawa M, Takeda M, Miyagawa S. Understanding the role of environmental temperature on sex determination through comparative studies in reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:48-59. [PMID: 37905472 DOI: 10.1002/jez.2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
In vertebrates, species exhibit phenotypic plasticity of sex determination that the sex can plastically be determined by the external environmental temperature through a mechanism, temperature-dependent sex determination (TSD). Temperature exerts influence over the direction of sexual differentiation pathways, resulting in distinct primary sex ratios in a temperature-dependent manner. This review provides a summary of the thermal sensitivities associated with sex determination in reptiles and amphibians, with a focus on the pattern of TSD, gonadal differentiation, temperature sensing, and the molecular basis underlying thermal sensitivity in sex determination. Comparative studies across diverse lineages offer valuable insights into comprehending the evolution of sex determination as a phenotypic plasticity. While evidence of molecular mechanisms governing sexual differentiation pathways continues to accumulate, the intracellular signaling linking temperature sensing and sexual differentiation pathways remains elusive. We emphasize that uncovering these links is a key for understanding species-specific thermal sensitivities in TSD and will contribute to a more comprehensive understanding of ecosystem and biodiversity conservations.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Daiki Hasui
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kai Ueda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Momoka Ishikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Du WG, Li SR, Sun BJ, Shine R. Can nesting behaviour allow reptiles to adapt to climate change? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220153. [PMID: 37427463 PMCID: PMC10331901 DOI: 10.1098/rstb.2022.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/18/2023] [Indexed: 07/11/2023] Open
Abstract
A range of abiotic parameters within a reptile nest influence the viability and attributes (including sex, behaviour and body size) of hatchlings that emerge from that nest. As a result of that sensitivity, a reproducing female can manipulate the phenotypic attributes of her offspring by laying her eggs at times and in places that provide specific conditions. Nesting reptiles shift their behaviour in terms of timing of oviposition, nest location and depth of eggs beneath the soil surface across spatial and temporal gradients. Those maternal manipulations affect mean values and variances of both temperature and soil moisture, and may modify the vulnerability of embryos to threats such as predation and parasitism. By altering thermal and hydric conditions in reptile nests, climate change has the potential to dramatically modify the developmental trajectories and survival rates of embryos, and the phenotypes of hatchlings. Reproducing females buffer such effects by modifying the timing, location and structure of nests in ways that enhance offspring viability. Nonetheless, our understanding of nesting behaviours in response to climate change remains limited in reptiles. Priority topics for future studies include documenting climate-induced changes in the nest environment, the degree to which maternal behavioural shifts can mitigate climate-related deleterious impacts on offspring development, and ecological and evolutionary consequences of maternal nesting responses to climate change. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shu-Ran Li
- College of Life and Environmental Science, Wenzhou University, Zhejiang 325035, People's Republic of China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
5
|
Bodensteiner BL, Iverson JB, Lea CA, Milne-Zelman CL, Mitchell TS, Refsnider JM, Voves K, Warner DA, Janzen FJ. Mother knows best: nest-site choice homogenizes embryo thermal environments among populations in a widespread ectotherm. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220155. [PMID: 37427473 PMCID: PMC10331915 DOI: 10.1098/rstb.2022.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 07/11/2023] Open
Abstract
Species with large geographical ranges provide an excellent model for studying how different populations respond to dissimilar local conditions, particularly with respect to variation in climate. Maternal effects, such as nest-site choice greatly affect offspring phenotypes and survival. Thus, maternal behaviour has the potential to mitigate the effects of divergent climatic conditions across a species' range. We delineated natural nesting areas of six populations of painted turtles (Chrysemys picta) that span a broad latitudinal range and quantified spatial and temporal variation in nest characteristics. To quantify microhabitats available for females to choose, we also identified sites within the nesting area of each location that were representative of available thermal microhabitats. Across the range, females nested non-randomly and targeted microhabitats that generally had less canopy cover and thus higher nest temperatures. Nest microhabitats differed among locations but did not predictably vary with latitude or historic mean air temperature during embryonic development. In conjunction with other studies of these populations, our results suggest that nest-site choice is homogenizing nest environments, which buffers embryos from thermally induced selection and could slow embryonic evolution. Thus, although effective at a macroclimatic scale, nest-site choice is unlikely to compensate for novel stressors that rapidly increase local temperatures. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.
Collapse
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - John B. Iverson
- Department of Biology, Earlham College, Richmond, IN 60071, USA
| | - Carter A. Lea
- Office of Research Proposal Development, Tulane University, New Orleans, LA 70118, USA
| | | | - Timothy S. Mitchell
- College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | - Daniel A. Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
6
|
Melanson CA, Lamarre SG, Currie S. Social experience influences thermal sensitivity: lessons from an amphibious mangrove fish. J Exp Biol 2023; 226:jeb245656. [PMID: 37470196 DOI: 10.1242/jeb.245656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Understanding the factors affecting the capacity of ectothermic fishes to cope with warming temperature is critical given predicted climate change scenarios. We know that a fish's social environment introduces plasticity in how it responds to high temperature. However, the magnitude of this plasticity and the mechanisms underlying socially modulated thermal responses are unknown. Using the amphibious hermaphroditic mangrove rivulus fish Kryptolebias marmoratus as a model, we tested three hypotheses: (1) social stimulation affects physiological and behavioural thermal responses of isogenic lineages of fish; (2) social experience and acute social stimulation result in distinct physiological and behavioural responses; and (3) a desensitization of thermal receptors is responsible for socially modulated thermal responses. To test the first two hypotheses, we measured the temperature at which fish emerged from the water (i.e. pejus temperature) upon acute warming with socially naive isolated fish and with fish that were raised alone and then given a short social experience prior to exposure to increasing temperature (i.e. socially experienced fish). Our results did not support our first hypothesis as fish socially stimulated by mirrors during warming (i.e. acute social stimulation) emerged at similar temperatures to isolated fish. However, in support of our second hypothesis, a short period of prior social experience resulted in fish emerging at a higher temperature than socially naive fish suggesting an increase in pejus temperature with social experience. To test our third hypothesis, we exposed fish that had been allowed a brief social interaction and naive fish to capsaicin, an agonist of TRPV1 thermal receptors. Socially experienced fish emerged at significantly higher capsaicin concentrations than socially naive fish suggesting a desensitization of their TRPV1 thermal receptors. Collectively, our data indicate that past and present social experiences impact the behavioural response of fish to high temperature. We also provide novel data suggesting that brief periods of social experience affect the capacity of fish to perceive warm temperature.
Collapse
Affiliation(s)
- Chloé A Melanson
- Département de biologie, Université de Moncton, New Brunswick, E1A 3E9, Canada
| | - Simon G Lamarre
- Département de biologie, Université de Moncton, New Brunswick, E1A 3E9, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
7
|
Ma L, Hou C, Jiang ZW, Du WG. Divergent effects of climate change on the egg-laying opportunity of species in cold and warm regions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14056. [PMID: 36661061 DOI: 10.1111/cobi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/30/2023]
Abstract
Climate warming can substantially impact embryonic development and juvenile growth in oviparous species. Estimating the overall impacts of climate warming on oviparous reproduction is difficult because egg-laying events happen throughout the reproductive season. Successful egg laying requires the completion of embryonic development as well as hatching timing conducive to offspring survival and energy accumulation. We propose a new metric-egg-laying opportunity (EO)-to estimate the annual hours during which a clutch of freshly laid eggs yields surviving offspring that store sufficient energy for overwintering. We estimated the EO within the distribution of a model species, Sceloporus undulatus, under recent climate condition and a climate-warming scenario by combining microclimate data, developmental functions, and biophysical models. We predicted that EO will decline as the climate warms at 74.8% of 11,407 sites. Decreasing hatching success and offspring energy accounted for more lost EO hours (72.6% and 72.9%) than the occurrence of offspring heat stress (59.9%). Nesting deeper (at a depth of 12 cm) may be a more effective behavioral adjustment for retaining EO than using shadier (50% shade) nests because the former fully mitigated the decline of EO under the considered warming scenario at more sites (66.1%) than the latter (28.3%). We advocate for the use of EO in predicting the impacts of climate warming on oviparous animals because it encapsulates the integrative impacts of climate warming on all stages of reproductive life history.
Collapse
Affiliation(s)
- Liang Ma
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Roberts HP, Willey LL, Jones MT, Akre TSB, King DI, Kleopfer J, Brown DJ, Buchanan SW, Chandler HC, deMaynadier P, Winters M, Erb L, Gipe KD, Johnson G, Lauer K, Liebgold EB, Mays JD, Meck JR, Megyesy J, Mota JL, Nazdrowicz NH, Oxenrider KJ, Parren M, Ransom TS, Rohrbaugh L, Smith S, Yorks D, Zarate B. Is the future female for turtles? Climate change and wetland configuration predict sex ratios of a freshwater species. GLOBAL CHANGE BIOLOGY 2023; 29:2643-2654. [PMID: 36723260 DOI: 10.1111/gcb.16625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/15/2022] [Indexed: 05/31/2023]
Abstract
Climate change and land-use change are leading drivers of biodiversity decline, affecting demographic parameters that are important for population persistence. For example, scientists have speculated for decades that climate change may skew adult sex ratios in taxa that express temperature-dependent sex determination (TSD), but limited evidence exists that this phenomenon is occurring in natural settings. For species that are vulnerable to anthropogenic land-use practices, differential mortality among sexes may also skew sex ratios. We sampled the spotted turtle (Clemmys guttata), a freshwater species with TSD, across a large portion of its geographic range (Florida to Maine), to assess the environmental factors influencing adult sex ratios. We present evidence that suggests recent climate change has potentially skewed the adult sex ratio of spotted turtles, with samples following a pattern of increased proportions of females concomitant with warming trends, but only within the warmer areas sampled. At intermediate temperatures, there was no relationship with climate, while in the cooler areas we found the opposite pattern, with samples becoming more male biased with increasing temperatures. These patterns might be explained in part by variation in relative adaptive capacity via phenotypic plasticity in nest site selection. Our findings also suggest that spotted turtles have a context-dependent and multi-scale relationship with land use. We observed a negative relationship between male proportion and the amount of crop cover (within 300 m) when wetlands were less spatially aggregated. However, when wetlands were aggregated, sex ratios remained consistent. This pattern may reflect sex-specific patterns in movement that render males more vulnerable to mortality from agricultural machinery and other threats. Our findings highlight the complexity of species' responses to both climate change and land use, and emphasize the role that landscape structure can play in shaping wildlife population demographics.
Collapse
Affiliation(s)
- H Patrick Roberts
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Lisabeth L Willey
- Department of Environmental Studies, Antioch University New England, Keene, New Hampshire, USA
- American Turtle Observatory, New Salem, Massachusetts, USA
| | - Michael T Jones
- Natural Heritage and Endangered Species Program, Massachusetts Division of Fisheries and Wildlife, Westborough, Massachusetts, USA
| | - Thomas S B Akre
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - David I King
- U.S. Forest Service, Northern Research Station, Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - John Kleopfer
- Virginia Department of Wildlife Resources, Charles City, Virginia, USA
| | - Donald J Brown
- U.S. Forest Service, Pacific Northwest Research Station, Amboy, Washington, USA
- School of Natural Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Scott W Buchanan
- Division of Fish and Wildlife, Rhode Island Department of Environmental Management, West Kingston, Rhode Island, USA
| | - Houston C Chandler
- The Orianne Society, Tiger, Georgia, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Melissa Winters
- New Hampshire Fish and Game Department, Concord, New Hampshire, USA
| | - Lori Erb
- The Mid-Atlantic Center for Herpetology and Conservation, Oley, Pennsylvania, USA
| | - Katharine D Gipe
- Pennsylvania Fish and Boat Commission, Bellefonte, Pennsylvania, USA
| | - Glenn Johnson
- Biology Department, State University of New York, Potsdam, New York, USA
| | - Kathryn Lauer
- Department of Environmental Studies, Antioch University New England, Keene, New Hampshire, USA
- American Turtle Observatory, New Salem, Massachusetts, USA
| | - Eric B Liebgold
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Jonathan D Mays
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, USA
| | - Jessica R Meck
- Natural Heritage and Endangered Species Program, Massachusetts Division of Fisheries and Wildlife, Westborough, Massachusetts, USA
- Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Joshua Megyesy
- New Hampshire Fish and Game Department, Concord, New Hampshire, USA
| | - Joel L Mota
- U.S. Forest Service, Pacific Northwest Research Station, Amboy, Washington, USA
| | - Nathan H Nazdrowicz
- Species Conservation and Research Program, Delaware Division of Fish & Wildlife, Delaware, USA
| | - Kevin J Oxenrider
- West Virginia Division of Natural Resources, Romney, West Virginia, USA
| | - Molly Parren
- American Turtle Observatory, New Salem, Massachusetts, USA
| | - Tami S Ransom
- Environmental Studies Department, Salisbury University, Salisbury, Maryland, USA
| | - Lindsay Rohrbaugh
- District of Columbia Department of Energy & Environment, Washington, District of Columbia, USA
| | - Scott Smith
- Maryland Department of Natural Resources, Maryland, Wye Mills, USA
| | - Derek Yorks
- Maine Department of Inland Fisheries and Wildlife, Augusta, Maine, USA
| | - Brian Zarate
- New Jersey Division of Fish and Wildlife, Lebanon, New Jersey, USA
| |
Collapse
|
9
|
Kirkpatrick WH, Sheldon KS. Experimental increases in temperature mean and variance alter reproductive behaviours in the dung beetle Phanaeus vindex. Biol Lett 2022; 18:20220109. [PMID: 35857889 DOI: 10.1098/rsbl.2022.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temperature profoundly impacts insect development, but plasticity of reproductive behaviours may mediate the impacts of temperature change on earlier life stages. Few studies have examined the potential for adult behavioural plasticity to buffer offspring from the warmer, more variable temperatures associated with climate change. We used a field manipulation to examine whether the dung beetle Phanaeus vindex alters breeding behaviours in response to temperature changes and whether behavioural shifts protect offspring from temperature changes. Dung beetles lay eggs inside brood balls made of dung that are buried underground. Brood ball depth impacts the temperatures offspring experience with consequences for development. We placed adult females in either control or greenhouse treatments that simultaneously increased temperature mean and variance. We found that females in greenhouse treatments produced more brood balls that were smaller and buried deeper than controls, suggesting brood ball number or burial depth may come at a cost to brood ball size, which can impact offspring nutrition. Despite being buried deeper, brood balls from the greenhouse treatment experienced warmer mean temperatures but similar amplitudes of temperature fluctuation relative to controls. Our findings suggest adult behaviours may partially buffer developing offspring from temperature changes.
Collapse
Affiliation(s)
- William H Kirkpatrick
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| |
Collapse
|
10
|
Marques V, Riaño G, Carretero MA, Silva‐Rocha I, Rato C. Sex determination and optimal development in the Moorish gecko,
Tarentola mauritanica. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valéria Marques
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
| | - Gabriel Riaño
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
| | - Miguel A. Carretero
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- Department of Biology Faculty of Sciences of the University of Porto Porto Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Iolanda Silva‐Rocha
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Catarina Rato
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
11
|
Leivesley JA, Nancekivell EG, Brooks RJ, Litzgus JD, Rollinson N. Long-term resilience of primary sex ratios in a species with temperature-dependent sex determination after decades of climate warming. Am Nat 2022; 200:532-543. [DOI: 10.1086/720621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
13
|
Refsnider JM, Carter SE, Diaz A, Hulbert AC, Kramer GR, Madden P, Streby HM. Macro- and Microhabitat Predictors of Nest Success and Hatchling Survival in Eastern Box Turtles (Terrapene carolina carolina) and Spotted Turtles (Clemmys guttata) in Oak Savanna Landscapes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.788025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Differing selection pressures on stationary nest contents compared to mobile offspring mean that the nest-site characteristics resulting in the highest nest success may not be the same characteristics that result in the highest survival of juveniles from those nests. In such cases, maternal nest-site choice may optimize productivity overall by selecting nest sites that balance opposing pressures on nest success and juvenile survival, rather than maximizing survival of either the egg or the juvenile stage. Determining which macro- and microhabitat characteristics best predict overall productivity is critical for ensuring that land management activities increase overall recruitment into a population of interest, rather than benefiting one life stage at the inadvertent expense of another. We characterized nest-site choice at the macro- and microhabitat scale, and then quantified nest success and juvenile survival to overwintering in two declining turtle species, eastern box turtles and spotted turtles, that co-occur in oak savanna landscapes of northwestern Ohio and southern Michigan. Nest success in box turtles was higher in nests farther from macrohabitat edges, constructed later in the year, and at greater total depths. In contrast, survival of juvenile box turtles to overwintering was greater from nests under less shade cover and at shallower total depths. Spotted turtle nest success and juvenile survival were so high that we were unable to detect relationships between nest-site characteristics and the small amount of variation in survival. Our results demonstrate, at least for eastern box turtles, a tradeoff in nest depth between favoring nest success vs. juvenile survival to overwintering. We suggest that heterogeneity in microhabitat structure within nesting areas is important for allowing female turtles to both exercise flexibility in nest-site choice to match nest-site characteristics to prevailing weather conditions, and to place nests in close proximity to habitat that will subsequently be used by hatchlings for overwintering.
Collapse
|
14
|
Dissanayake DSB, Holleley CE, Georges A. Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink. Sci Rep 2021; 11:20093. [PMID: 34635741 PMCID: PMC8505511 DOI: 10.1038/s41598-021-99702-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Altered climate regimes have the capacity to affect the physiology, development, ecology and behaviour of organisms dramatically, with consequential changes in individual fitness and so the ability of populations to persist under climatic change. More directly, extreme temperatures can directly skew the population sex ratio in some species, with substantial demographic consequences that influence the rate of population decline and recovery rates. In contrast, this is particularly true for species whose sex is determined entirely by temperature (TSD). The recent discovery of sex reversal in species with genotypic sex determination (GSD) due to extreme environmental temperatures in the wild broadens the range of species vulnerable to changing environmental temperatures through an influence on primary sex ratio. Here we document the levels of sex reversal in nests of the Australian alpine three-lined skink (Bassiana duperreyi), a species with sex chromosomes and sex reversal at temperatures below 20 °C and variation in rates of sex reversal with elevation. The frequency of sex reversal in nests of B. duperreyi ranged from 28.6% at the highest, coolest locations to zero at the lowest, warmest locations. Sex reversal in this alpine skink makes it a sensitive indicator of climate change, both in terms of changes in average temperatures and in terms of climatic variability.
Collapse
Affiliation(s)
- Duminda S B Dissanayake
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
15
|
Lockley EC, Eizaguirre C. Effects of global warming on species with temperature-dependent sex determination: Bridging the gap between empirical research and management. Evol Appl 2021; 14:2361-2377. [PMID: 34745331 PMCID: PMC8549623 DOI: 10.1111/eva.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations' sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement.
Collapse
Affiliation(s)
- Emma C. Lockley
- School of Biological and Chemical SciencesQueen Mary University LondonLondonUK
| | | |
Collapse
|
16
|
Beltrán I, Perry C, Degottex F, Whiting MJ. Behavioral Thermoregulation by Mothers Protects Offspring from Global Warming but at a Cost. Physiol Biochem Zool 2021; 94:302-318. [PMID: 34260339 DOI: 10.1086/715976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThermal conditions during embryonic development affect offspring phenotype in ectotherms. Therefore, rising environmental temperatures can have important consequences for an individual's fitness. Nonetheless, females have some capacity to compensate for potential negative consequences that adverse developmental environments may have on their offspring. Recent studies show that oviparous reptiles exhibit behavioral plasticity in nest site selection, which can buffer their embryos against high incubation temperatures; however, much less is known about these responses in viviparous reptiles. We subjected pregnant viviparous skinks, Saiphos equalis, to current or projected midcentury (2050) temperatures to test (i) how elevated temperatures affect female thermoregulatory and foraging behavior; (ii) whether temperatures experienced by females during pregnancy negatively affect the morphology, performance, and behavior of hatchlings; and (iii) whether behavioral thermoregulation during pregnancy is costly to females. Females from the elevated temperature treatment compensated by going deeper belowground to seek cooler temperatures and eating less, and they consequently had a lower body mass relative to snout-to-vent length (condition estimator) compared with females from the current thermal treatment. The temperatures experienced by females in the elevated temperature treatment were high enough to affect foraging and locomotor performance but not the morphology and growth rate of hatchlings. By seeking cooler temperatures, mothers can mitigate some of the effects of high temperatures on their offspring (e.g., reduced body size and growth). However, this protective behavior of females may come at an energetic cost to them. This study adds to growing evidence of lizards' vulnerability to global warming, particularly during reproduction when females are already paying a substantial cost.
Collapse
|
17
|
Sun B, Ma L, Wang Y, Mi C, Buckley LB, Levy O, Lu H, Du W. Latitudinal embryonic thermal tolerance and plasticity shape the vulnerability of oviparous species to climate change. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bao‐jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
| | - Yang Wang
- School of Biological Sciences Hebei Normal University Shijiazhuang China
| | - Chun‐rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
| | - Lauren B. Buckley
- Department of Biology University of Washington Seattle Washington USA
| | - Ofir Levy
- School of Zoology Tel Aviv University Tel Aviv 6997801 Israel
| | - Hong‐liang Lu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution School of Life and Environmental Sciences Hangzhou Normal University Hangzhou Zhejiang 310036 China
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing 100101 China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming 650223 China
| |
Collapse
|
18
|
High elevation increases the risk of Y chromosome loss in Alpine skink populations with sex reversal. Heredity (Edinb) 2021; 126:805-816. [PMID: 33526811 PMCID: PMC8102603 DOI: 10.1038/s41437-021-00406-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
The view that has genotypic sex determination and environmental sex determination as mutually exclusive states in fishes and reptiles has been contradicted by the discovery that chromosomal sex and environmental influences can co-exist within the same species, hinting at a continuum of intermediate states. Systems where genes and the environment interact to determine sex present the opportunity for sex reversal to occur, where the phenotypic sex is the opposite of that predicted by their sex chromosome complement. The skink Bassiana duperreyi has XX/XY sex chromosomes with sex reversal of the XX genotype to a male phenotype, in laboratory experiments, and in field nests, in response to exposure to cold incubation temperatures. Here we studied the frequency of sex reversal in adult populations of B. duperreyi in response to climatic variation, using elevation as a surrogate for environmental temperatures. We demonstrate sex reversal in the wild for the first time in adults of a reptile species with XX/XY sex determination. The highest frequency of sex reversal occurred at the highest coolest elevation location, Mt Ginini (18.46%) and decreased in frequency to zero with decreasing elevation. We model the impact of this under Fisher's frequency-dependent selection to show that, at the highest elevations, populations risk the loss of the Y chromosome and a transition to temperature-dependent sex determination. This study contributes to our understanding of the risks of extinction from climate change in species subject to sex reversal by temperature, and will provide focus for future research to test on-the-ground management strategies to mitigate the effects of climate in local populations.
Collapse
|
19
|
Rueda-Zozaya P, Plasman M, Reynoso VH. Good alimentation can overcome the negative effects of climate change on growth in reptiles. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Climate change may lead to higher nest temperatures, which may increase embryo development rate but reduce hatchling size and growth. Larger body size permits better performance, making growth an important fitness trait. In ectotherms, growth is affected by temperature and food quality. To segregate the effects of incubation temperature vs. alimentation on the growth of the Mexican black spiny-tailed iguana, Ctenosaura pectinata, we incubated eggs at 29 or 32 °C, and hatchlings were kept at 30 °C and fed either high- or low-quality food for 1 year, with body size and mass being recorded every 2 weeks. Iguanas incubated at 29 °C grew faster than those incubated at 32 °C. However, food quality had a larger effect on growth than incubation temperature; iguanas fed with high-quality food reached larger body sizes. Growth models suggested that differences in growth between incubation temperatures and food types remain throughout their lives. We found that incubation temperature had long-lasting effects on an ectotherm, and higher incubation temperatures might lead to reduced growth and maturation at a later age. However, food might transcend the effect of increased incubation temperature; therefore, good alimentation might mitigate effects of climate change on growth.
Collapse
Affiliation(s)
- Pilar Rueda-Zozaya
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Melissa Plasman
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Víctor Hugo Reynoso
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
20
|
Hedrick AR, Greene DU, Lewis EL, Hood AS, Iverson JB. Climate effects on nesting phenology in Nebraska turtles. Ecol Evol 2021; 11:1225-1239. [PMID: 33598126 PMCID: PMC7863389 DOI: 10.1002/ece3.7105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
A frequent response of organisms to climate change is altering the timing of reproduction, and advancement of reproductive timing has been a common reaction to warming temperatures in temperate regions. We tested whether this pattern applied to two common North American turtle species over the past three decades in Nebraska, USA. The timing of nesting (either first date or average date) of the Common Snapping Turtle (Chelydra serpentina) was negatively correlated with mean December maximum temperatures of the preceding year and mean May minimum and maximum temperatures in the nesting year and positively correlated with precipitation in July of the previous year. Increased temperatures during the late winter and spring likely permit earlier emergence from hibernation, increased metabolic rates and feeding opportunities, and accelerated vitellogenesis, ovulation, and egg shelling, all of which could drive earlier nesting. However, for the Painted Turtle (Chrysemys picta), the timing of nesting was positively correlated with mean minimum temperatures in September, October, December of the previous year, February of the nesting year, and April precipitation. These results suggest warmer fall, and winter temperature may impose an increased metabolic cost to painted turtles that impedes fall vitellogenesis, and April rains may slow the completion of vitellogenesis through decreased basking opportunities. For both species, nest deposition was highly correlated with body size, and larger females nested earlier in the season. Although average annual ambient temperatures have increased over the last four decades of our overall fieldwork at our study site, spring temperatures have not yet increased, and hence, nesting phenology has not advanced at our site for Chelydra. While Chrysemys exhibited a weak trend toward later nesting, this response was likely due to increased recruitment of smaller females into the population due to nest protection and predator control (Procyon lotor) in the early 2000s. Should climate change result in an increase in spring temperatures, nesting phenology would presumably respond accordingly, conditional on body size variation within these populations.
Collapse
Affiliation(s)
- Ashley R. Hedrick
- Department of BiologyEarlham CollegeRichmondINUSA
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIAUSA
| | | | - Erin L. Lewis
- Department of BiologyEarlham CollegeRichmondINUSA
- Department of BiologyUtah State UniversityLoganUTUSA
| | | | | |
Collapse
|
21
|
Lu HL, Qu YF, Li H, Ji X. Contributions of source population and incubation temperature to phenotypic variation of hatchling Chinese skinks. Curr Zool 2020. [DOI: 10.1093/cz/zoaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Phenotypic plasticity and local adaptation are viewed as the main factors that result in between-population variation in phenotypic traits, but contributions of these factors to phenotypic variation vary between traits and between species and have only been explored in a few species of reptiles. Here, we incubated eggs of the Chinese skink (Plestiodon chinensis) from 7 geographically separated populations in Southeast China at 3 constant temperatures (24, 28, and 32 °C) to evaluate the combined effects of clutch origin, source population, and incubation temperature on hatchling traits. The relative importance of these factors varied between traits. Nearly all examined hatchling traits, including body mass, snout–vent length (SVL), tail length, head size, limb length, tympanum diameter, and locomotor speed, varied among populations and were affected by incubation temperature. Measures for hatchling size (body mass and SVL) varied considerably among clutches. Source population explained much of the variation in hatchling body mass, whereas incubation temperature explained much of the variation in other examined traits. Our results indicate that between-population variation in hatchling traits of P. chinensis likely reflects the difference in natural incubation conditions and genetic divergence.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
22
|
Mamantov MA, Sheldon KS. Behavioural responses to warming differentially impact survival in introduced and native dung beetles. J Anim Ecol 2020; 90:273-281. [PMID: 33037612 DOI: 10.1111/1365-2656.13366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Anthropogenic changes are often studied in isolation but may interact to affect biodiversity. For example, climate change could exacerbate the impacts of biological invasions if climate change differentially affects invasive and native species. Behavioural plasticity may mitigate some of the impacts of climate change, but species vary in their degree of behavioural plasticity. In particular, invasive species may have greater behavioural plasticity than native species since plasticity helps invasive species establish and spread in new environments. This plasticity could make invasives better able to cope with climate change. Here our goal was to examine whether reproductive behaviours and behavioural plasticity vary between an introduced and a native Onthophagus dung beetle species in response to warming temperatures and how differences in behaviour influence offspring survival. Using a repeated measures design, we exposed small colonies of introduced O. taurus and native O. hecate to three temperature treatments, including a control, low warming and high warming treatment, and then measured reproductive behaviours, including the number, size and burial depth of brood balls. We reared offspring in their brood balls in developmental temperatures that matched those of the brood ball burial depth to quantify survival. We found that the introduced O. taurus produced more brood balls and larger brood balls, and buried brood balls deeper than the native O. hecate in all treatments. However, the two species did not vary in the degree of behavioural plasticity in response to warming. Differences in reproductive behaviours did affect survival such that warming temperatures had a greater effect on survival of offspring of native O. hecate compared to introduced O. taurus. Overall, our results suggest that differences in behaviour between native and introduced species are one mechanism through which climate change may exacerbate negative impacts of biological invasions.
Collapse
Affiliation(s)
- Margaret A Mamantov
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
23
|
Hall JM, Warner DA. Ecologically relevant thermal fluctuations enhance offspring fitness: biological and methodological implications for studies of thermal developmental plasticity. J Exp Biol 2020; 223:jeb231902. [PMID: 32778564 DOI: 10.1242/jeb.231902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 08/26/2023]
Abstract
Natural thermal environments are notably complex and challenging to mimic in controlled studies. Consequently, our understanding of the ecological relevance and underlying mechanisms of organismal responses to thermal environments is often limited. For example, studies of thermal developmental plasticity have provided key insights into the ecological consequences of temperature variation, but most laboratory studies use treatments that do not reflect natural thermal regimes. While controlling other important factors, we compared the effects of naturally fluctuating temperatures with those of commonly used laboratory regimes on development of lizard embryos and offspring phenotypes and survival. We incubated eggs in four treatments: three that followed procedures commonly used in the literature, and one that precisely mimicked naturally fluctuating nest temperatures. To explore context-dependent effects, we replicated these treatments across two seasonal regimes: relatively cool temperatures from nests constructed early in the season and warm temperatures from late-season nests. We show that natural thermal fluctuations have a relatively small effect on developmental variables but enhance hatchling performance and survival at cooler temperatures. Thus, natural thermal fluctuations are important for successful development and simpler approximations (e.g. repeated sine waves, constant temperatures) may poorly reflect natural systems under some conditions. Thus, the benefits of precisely replicating real-world temperatures in controlled studies may outweigh logistical costs. Although patterns might vary according to study system and research goals, our methodological approach demonstrates the importance of incorporating natural variation into controlled studies and provides biologists interested in thermal ecology with a framework for validating the effectiveness of commonly used methods.
Collapse
Affiliation(s)
- Joshua M Hall
- Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Daniel A Warner
- Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
24
|
Doody JS, McGlashan J, Fryer H, Coleman L, James H, Soennichsen K, Rhind D, Clulow S. Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Sci Rep 2020; 10:16048. [PMID: 32994522 PMCID: PMC7524748 DOI: 10.1038/s41598-020-73080-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/04/2022] Open
Abstract
Natural selection is expected to select for and maintain maternal behaviors associated with choosing a nest site that promotes successful hatching of offspring, especially in animals that do not exhibit parental care such as reptiles. In contrast to temperature effects, we know little about how soil moisture contributes to successful hatching and particularly how it shapes nest site choice behavior in nature. The recent revelation of exceptionally deep nesting in lizards under extreme dry conditions underscored the potential for the hydric environment in shaping the evolution of nest site choice. But if deep nesting is an adaptation to dry conditions, is there a plastic component such that mothers would excavate deeper nests in drier years? We tested this hypothesis by excavating communal warrens of a large, deep-nesting monitor lizard (Varanus panoptes), taking advantage of four wet seasons with contrasting rainfall amounts. We found 75 nests during two excavations, including 45 nests after a 4-year period with larger wet season rainfall and 30 nests after a 4-year period with smaller wet season rainfall. Mothers nested significantly deeper in years associated with drier nesting seasons, a finding best explained as a plastic response to soil moisture, because differences in both the mean and variance in soil temperatures between 1 and 4 m deep are negligible. Our data are novel for reptiles in demonstrating plasticity in maternal behavior in response to hydric conditions during the time of nesting. The absence of evidence for other ground-nesting reptile mothers adjusting nest depth in response to a hydric-depth gradient is likely due to the tradeoff between moisture and temperature with changing depth; most ground-nesting reptile eggs are deposited at depths of ~ 2–25 cm—nesting deeper within or outside of that range of depths to achieve higher soil moisture would also generally create cooler conditions for embryos that need adequate heat for successful development. In contrast, extreme deep nesting in V. panoptes allowed us to disentangle temperature and moisture. Broadly, our data suggest that ground-nesting reptiles can assess soil moisture and respond by adjusting the depth of the nest, but may not, due to the cooling effect of nesting deeper. Our results, within the context of previous work, provide a more complete picture of how mothers can promote hatching success through adjustments in nest site choice behavior.
Collapse
Affiliation(s)
- J Sean Doody
- Department of Integrative Biology, University of South Florida, St. Petersburg, FL, 33701, USA. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Jessica McGlashan
- School of Health Sciences, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Harry Fryer
- Department of Biological Sciences, Macquarie University, Balaclava Rd., Macquarie Park, NSW, 2109, Australia
| | - Lizzy Coleman
- Department of Integrative Biology, University of South Florida, St. Petersburg, FL, 33701, USA
| | - Hugh James
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kari Soennichsen
- Department of Biological Sciences, Macquarie University, Balaclava Rd., Macquarie Park, NSW, 2109, Australia
| | - David Rhind
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Simon Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.,Department of Biological Sciences, Macquarie University, Balaclava Rd., Macquarie Park, NSW, 2109, Australia
| |
Collapse
|
25
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
26
|
Beltrán I, Durand V, Loiseleur R, Whiting MJ. Effect of early thermal environment on the morphology and performance of a lizard species with bimodal reproduction. J Comp Physiol B 2020; 190:795-809. [PMID: 32951106 DOI: 10.1007/s00360-020-01312-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Early developmental environments influence life-history traits and survival of reptiles. In fact, rising global temperatures have already caused widespread extinctions among lizards. Viviparous species might be more susceptible to increasing temperatures because of their inability to meet their energetic demands following rapid environmental changes. Nevertheless, we do not yet fully understand how lizards with different reproductive modes can respond to climate change. We investigated the effect of both maternal thermal environment during pregnancy and incubation temperature on hatchling morphology and physiological performance of two populations of the lizard Saiphos equalis differing in their mode of reproduction, to test whether reproductive mode affects the ability to buffer against rising temperatures. Gravid females from both populations were subjected to current or projected end-of-century (future) thermal environments, to evaluate differences in the body size, growth rate, thermal preference, and locomotor performance of their offspring. Our results show that independently of the mode of reproduction, high temperatures accelerated gestation periods. Thermal environments did not affect hatchling thermal preference, but viviparous hatchlings consistently preferred lower temperatures. Unlike viviparous lizards, oviparous hatchlings incubated under future temperatures were smaller and had a lower growth rate compared to current-incubated hatchlings. Finally, thermal environments did not affect hatchling endurance and speed when controlling for body size. Our results show that global warming is likely to have a negative impact on S. equalis, but suggest that some of its effects may be ameliorated by maternal responses during pregnancy, particularly in viviparous populations.
Collapse
Affiliation(s)
- Iván Beltrán
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Victorien Durand
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Faculty of the Sciences of Life, University of Strasbourg, Strasbourg, Alsace, France
| | - Rebecca Loiseleur
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Faculty of the Sciences of Life, University of Strasbourg, Strasbourg, Alsace, France
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Hall JM, Sun BJ. Heat tolerance of reptile embryos: Current knowledge, methodological considerations, and future directions. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:45-58. [PMID: 32757379 DOI: 10.1002/jez.2402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Aspects of global change result in warming temperatures that threaten biodiversity across the planet. Eggs of non-avian, oviparous reptiles (henceforth "reptiles") are particularly vulnerable to warming due to a lack of parental care during incubation and limited ability to behaviorally thermoregulate. Because warming temperatures will cause increases in both mean and variance of nest temperatures, it is crucial to consider embryo responses to both chronic and acute heat stress. Although many studies have considered embryo survival across constant incubation temperatures (i.e., chronic stress) and in response to brief exposure to extreme temperatures (i.e., acute stress), there are no standard metrics or terminology for determining heat stress of embryos. This impedes comparisons across studies and species and hinders our ability to predict how species will respond to global change. In this review, we compare various methods that have been used to assess embryonic heat tolerance in reptiles and provide new terminology and metrics for quantifying embryo responses to both chronic and acute heat stress. We apply these recommendations to data from the literature to assess chronic heat tolerance in 16 squamates, 16 turtles, five crocodilians, and the tuatara and acute heat tolerance for nine squamates and one turtle. Our results indicate that there is relatively large variation in chronic and acute heat tolerance across species, and we outline directions for future research, calling for more studies that assess embryo responses to acute thermal stress, integrate embryo responses to chronic and acute temperatures in predictive models, and identify mechanisms that determine heat tolerance.
Collapse
Affiliation(s)
- Joshua M Hall
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Effects of early thermal environment on the behavior and learning of a lizard with bimodal reproduction. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02849-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Pruett JE, Fargevieille A, Warner DA. Temporal variation in maternal nest choice and its consequences for lizard embryos. Behav Ecol 2020. [DOI: 10.1093/beheco/araa032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractMicrohabitat choice of nest sites is an important maternal effect that influences the survival and development of embryos in oviparous species. Embryos of many species display a high degree of plasticity in response to developmental environments, which places maternal nesting behavior under strong selective pressure, particularly in temporally changing environments. Nesting behavior varies widely across taxa that exhibit diverse reproductive strategies. The brown anole (Anolis sagrei), for example, lays one egg every 7–10 days across an extended reproductive season from April to October. This aspect of their reproduction provides an opportunity to examine temporal shifts in nesting behavior and its consequences on egg survival and offspring development under seasonally changing climatic conditions. We conducted a two-part study to quantify temporal variation in maternal nesting behavior and its effect on development of A. sagrei embryos. First, we measured nest micro-environments over the nesting season. Second, we “planted” eggs across the landscape at our field site to examine the influence of nest conditions on egg survival and hatchling phenotypes. We also incubated eggs inside chambers in the field to decouple effects of nest moisture from those of other environmental variables (e.g., temperature). Females chose nest sites with higher moisture and lower temperatures relative to what was generally available across the landscape during the nesting season. In addition, eggs exposed to relatively cool temperatures had higher hatching success, and high nest moisture increased egg survival and body condition of hatchlings. Overall, we provide evidence in the field that maternal nesting behavior facilitates offspring survival.
Collapse
Affiliation(s)
- Jenna E Pruett
- Department of Biological Sciences, Auburn University, Rouse Life Sciences, Auburn, AL, USA
| | - Amélie Fargevieille
- Department of Biological Sciences, Auburn University, Rouse Life Sciences, Auburn, AL, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Rouse Life Sciences, Auburn, AL, USA
| |
Collapse
|
30
|
Bock SL, Lowers RH, Rainwater TR, Stolen E, Drake JM, Wilkinson PM, Weiss S, Back B, Guillette L, Parrott BB. Spatial and temporal variation in nest temperatures forecasts sex ratio skews in a crocodilian with environmental sex determination. Proc Biol Sci 2020; 287:20200210. [PMID: 32345164 DOI: 10.1098/rspb.2020.0210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species displaying temperature-dependent sex determination (TSD) are especially vulnerable to the effects of a rapidly changing global climate due to their profound sensitivity to thermal cues during development. Predicting the consequences of climate change for these species, including skewed offspring sex ratios, depends on understanding how climatic factors interface with features of maternal nesting behaviour to shape the developmental environment. Here, we measure thermal profiles in 86 nests at two geographically distinct sites in the northern and southern regions of the American alligator's (Alligator mississippiensis) geographical range, and examine the influence of both climatic factors and maternally driven nest characteristics on nest temperature variation. Changes in daily maximum air temperatures drive annual trends in nest temperatures, while variation in individual nest temperatures is also related to local habitat factors and microclimate characteristics. Without any compensatory nesting behaviours, nest temperatures are projected to increase by 1.6-3.7°C by the year 2100, and these changes are predicted to have dramatic consequences for offspring sex ratios. Exact sex ratio outcomes vary widely depending on site and emission scenario as a function of the unique temperature-by-sex reaction norm exhibited by all crocodilians. By revealing the ecological drivers of nest temperature variation in the American alligator, this study provides important insights into the potential consequences of climate change for crocodilian species, many of which are already threatened by extinction.
Collapse
Affiliation(s)
- Samantha L Bock
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| | - Russell H Lowers
- Integrated Mission Support Services, John F. Kennedy Space Center, FL 32899, USA
| | - Thomas R Rainwater
- Tom Yawkey Wildlife Center, Georgetown, SC 29440, USA.,Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, SC 29442, USA
| | - Eric Stolen
- Integrated Mission Support Services, John F. Kennedy Space Center, FL 32899, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | | - Stephanie Weiss
- Integrated Mission Support Services, John F. Kennedy Space Center, FL 32899, USA
| | - Brenton Back
- Integrated Mission Support Services, John F. Kennedy Space Center, FL 32899, USA
| | - Louis Guillette
- Medical University of South Carolina, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA.,Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| |
Collapse
|
31
|
Schwanz LE, Georges A, Holleley CE, Sarre SD. Climate change, sex reversal and lability of sex‐determining systems. J Evol Biol 2020; 33:270-281. [DOI: 10.1111/jeb.13587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Lisa E. Schwanz
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney NSW Australia
| | - Arthur Georges
- Institute for Applied Ecology University of Canberra Canberra ACT Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia Canberra ACT Australia
| | - Stephen D. Sarre
- Institute for Applied Ecology University of Canberra Canberra ACT Australia
| |
Collapse
|
32
|
Du WG, Shine R, Ma L, Sun BJ. Adaptive responses of the embryos of birds and reptiles to spatial and temporal variations in nest temperatures. Proc Biol Sci 2019; 286:20192078. [PMID: 31744441 DOI: 10.1098/rspb.2019.2078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Natural nests of egg-laying birds and reptiles exhibit substantial thermal variation, at a range of spatial and temporal scales. Rates and trajectories of embryonic development are highly sensitive to temperature, favouring an ability of embryos to respond adaptively (i.e. match their developmental biology to local thermal regimes). Spatially, thermal variation can be significant within a single nest (top to bottom), among adjacent nests (as a function of shading, nest depth etc.), across populations that inhabit areas with different weather conditions, and across species that differ in climates occupied and/or nest characteristics. Thermal regimes also vary temporally, in ways that generate differences among nests within a single population (e.g. due to seasonal timing of laying), among populations and across species. Anthropogenic activities (e.g. habitat clearing, climate change) add to this spatial and temporal diversity in thermal regimes. We review published literature on embryonic adaptations to spatio-temporal heterogeneity in nest temperatures. Although relatively few taxa have been studied in detail, and proximate mechanisms remain unclear, our review identifies many cases in which natural selection appears to have fine-tuned embryogenesis to match local thermal regimes. Developmental rates have been reported to differ between uppermost versus lower eggs within a single nest, between eggs laid early versus late in the season, and between populations from cooler versus warmer climates. We identify gaps in our understanding of thermal adaptations of early (embryonic) phases of the life history, and suggest fruitful opportunities for future research.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
33
|
The Embryos of Turtles Can Influence Their Own Sexual Destinies. Curr Biol 2019; 29:2597-2603.e4. [PMID: 31378606 DOI: 10.1016/j.cub.2019.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022]
Abstract
Sessile organisms with thermally sensitive developmental trajectories are at high risk from climate change. For example, oviparous reptiles with temperature-dependent sex determination (TSD) may experience strong (potentially disastrous) shifts in offspring sex ratio if reproducing females are unable to predict incubation conditions at the time of oviposition. How then have TSD reptile taxa persisted over previous periods of extreme climatic conditions? An ability of embryos to move within the egg to select optimal thermal regimes could buffer ambient extremes, but the feasibility of behavioral thermoregulation by embryos has come under strong challenge. To test this idea, we measured thermal gradients within eggs in semi-natural nests of a freshwater turtle species with TSD, manipulated embryonic thermoregulatory ability, and modeled the effects of embryonic thermoregulation on offspring sex ratios. Behavioral thermoregulation by embryos accelerated development and influenced offspring sex ratio, expanding the range of ambient conditions under which nests produce equal numbers of male and female offspring. Model projections suggest that sex ratio shifts induced by global warming will be buffered by the ability of embryos to influence their sexual destiny via behavioral thermoregulation.
Collapse
|
34
|
Janzen FJ, Delaney DM, Mitchell TS, Warner DA. Do Covariances Between Maternal Behavior and Embryonic Physiology Drive Sex-Ratio Evolution Under Environmental Sex Determination? J Hered 2019; 110:411-421. [PMID: 30982894 DOI: 10.1093/jhered/esz021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/11/2019] [Indexed: 11/12/2022] Open
Abstract
Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However, organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals with ESD with regard to 2 traits predicted to be responsive to sex-ratio selection: 1) maternal oviposition behavior and 2) sensitivity of embryonic sex determination to environmental conditions, and much research has since focused on how these traits influence offspring sex ratios. However, relatively few studies have provided estimates of univariate quantitative genetic parameters for these 2 traits, and the existence of phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on 3 species of reptiles (2 turtle species and a lizard) with temperature-dependent sex determination (TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However, we detected no such covariance between measures of these categories of traits in the 3 study species. These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in embryos might evolve independently. Such information is critical to understand how animals with TSD will respond to rapidly changing environments that induce sex-ratio selection.
Collapse
Affiliation(s)
- Fredric J Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - David M Delaney
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Timothy S Mitchell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL
| |
Collapse
|
35
|
Effects of local climate on loggerhead hatchling production in Brazil: Implications from climate change. Sci Rep 2019; 9:8861. [PMID: 31222177 PMCID: PMC6586835 DOI: 10.1038/s41598-019-45366-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sea turtle eggs are heavily influenced by the environment in which they incubate, including effects on hatching success and hatchling viability (hatchling production). It is crucial to understand how the hatchling production of sea turtles is influenced by local climate and how potential changes in climate may impact future hatchling production. Generalized Additive Models were used to determine the relationship of six climatic variables at different temporal scales on loggerhead turtle (Caretta caretta) hatchling production at seventeen nesting beaches in Bahia, Espirito Santo, and Rio de Janeiro, Brazil. Using extreme and conservative climate change scenarios throughout the 21st century, potential impacts on future hatching success (the number of hatched eggs in a nest) were predicted using the climatic variable(s) that best described hatchling production at each nesting beach. Air temperature and precipitation were found to be the main drivers of hatchling production throughout Brazil. CMIP5 climate projections are for a warming of air temperature at all sites throughout the 21st century, while projections for precipitation vary regionally. The more tropical nesting beaches in Brazil, such as those in Bahia, are projected to experience declines in hatchling production, while the more temperate nesting beaches, such as those in Rio de Janeiro, are projected to experience increases in hatchling production by the end of the 21st century.
Collapse
|
36
|
Abayarathna T, Murray BR, Webb JK. Higher incubation temperatures produce long-lasting upward shifts in cold tolerance, but not heat tolerance, of hatchling geckos. Biol Open 2019; 8:8/4/bio042564. [PMID: 31000681 PMCID: PMC6503992 DOI: 10.1242/bio.042564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heatwaves are a regular occurrence in Australia, and are predicted to increase in intensity and duration in the future. These changes may elevate temperatures inside lizard nests, shortening the incubation period, so that hatchlings are more likely to emerge during heatwaves. Potentially, developmental plasticity or heat hardening could buffer hatchings from future warming. For example, higher incubation temperatures could shift critical thermal maxima upwards, enabling lizards to withstand higher temperatures. To investigate whether developmental plasticity affects hatchling thermal tolerance, we incubated eggs of the velvet gecko Amalosia lesueurii under two fluctuating incubation treatments to mimic current (mean=24.3°C, range 18.4–31.1°C) and future ‘hot’ (mean=28.9°C, range 19.1–38.1°C) nest temperatures. We maintained the hatchlings under identical conditions, and measured their thermal tolerance (CTmax) aged 14 days and 42 days. We then released hatchlings at field sites, and recaptured individually marked lizards aged 6 months, to determine whether incubation induced shifts in thermal tolerance were transitory or long-lasting. We found that at age 14 days, hatchlings from hot-temperature incubation had higher CTmax [mean=39.96±0.25°C (s.d.)] than hatchlings from current-temperature incubation [mean=39.70±0.36°C (s.d.)]. Hatchlings from the current-incubation treatment also had significantly higher heat hardening capacity [mean=0.79±0.37°C (s.d.)] than hatchlings from hot-temperature incubation treatment [mean=0.47±0.17°C (s.d. )]. However, both of these incubation-induced effects did not persist into later life. By contrast, incubation treatment had significant and long-lasting effects on the cold tolerance of hatchlings. At age 14 days, current-incubated hatchlings tolerated colder temperatures [CTmin=11.24±0.41°C (s.d.)] better than hot-incubated hatchlings [CTmin=14.11±0.25°C (s.d.)]. This significant difference in cold tolerance persisted into the juvenile life stage, and was present in 6-month-old lizards that we recaptured from field sites. This finding indicates that upward shifts in cold tolerance caused by higher incubation temperatures might affect overwinter survival of lizards, but field studies linking fitness to thermal tolerance are necessary to test this idea. Overall, our results suggest that developmental plasticity for heat tolerance is unlikely to buffer lizard populations from higher temperatures. This article has an associated First Person interview with the first author of the paper. Summary: Hatchling geckos from current temperature incubation tolerated cold better than hatchlings from future temperature incubation. The developmental shift in cold tolerance persisted for 6 months, and could therefore influence hatchling survival.
Collapse
Affiliation(s)
- Theja Abayarathna
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Brad R Murray
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Jonathan K Webb
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
37
|
|
38
|
Low food availability during gestation enhances offspring post-natal growth, but reduces survival, in a viviparous lizard. Oecologia 2019; 189:611-620. [PMID: 30725369 DOI: 10.1007/s00442-019-04349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
The environment experienced by a mother can have profound effects on the fitness of her offspring (i.e., maternal effects). Maternal effects can be adaptive when the developmental environments experienced by offspring promote phenotypes that provide fitness benefits either via matching offspring phenotype to the post-developmental environment (also known as anticipatory maternal effects) or through direct effects on offspring growth and survival. We tested these hypotheses in a viviparous lizard using a factorial experimental design in which mothers received either high or low amounts of food during gestation, and resultant offspring were raised on either high or low amounts of food post-birth. We found no effect of food availability during gestation on reproductive traits of mothers or offspring traits at birth. However, offspring from mothers who received low food during gestation exhibited a greater increase in condition in the post-birth period, suggesting some form of priming of offspring by mothers to cope with an anticipated poor environment after birth. Offspring that received low food during gestation were also more likely to die, suggesting a trade-off for this accelerated growth. There were also significant effects of post-birth food availability on offspring snout-vent length and body condition growth, with offspring with high food availability post birth doing better. However, the effects of the pre- and post-natal resource evnironment on offspring growth were independent on one another, therefore, providing no support for the presence of anticipatory maternal effects in the traditional sense.
Collapse
|
39
|
Liles MJ, Peterson TR, Seminoff JA, Gaos AR, Altamirano E, Henríquez AV, Gadea V, Chavarría S, Urteaga J, Wallace BP, Peterson MJ. Potential limitations of behavioral plasticity and the role of egg relocation in climate change mitigation for a thermally sensitive endangered species. Ecol Evol 2019; 9:1603-1622. [PMID: 30847059 PMCID: PMC6392375 DOI: 10.1002/ece3.4774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Anthropogenic climate change is widely considered a major threat to global biodiversity, such that the ability of a species to adapt will determine its likelihood of survival. Egg-burying reptiles that exhibit temperature-dependent sex determination, such as critically endangered hawksbill turtles (Eretmochelys imbricata), are particularly vulnerable to changes in thermal regimes because nest temperatures affect offspring sex, fitness, and survival. It is unclear whether hawksbills possess sufficient behavioral plasticity of nesting traits (i.e., redistribution of nesting range, shift in nesting phenology, changes in nest-site selection, and adjustment of nest depth) to persist within their climatic niche or whether accelerated changes in thermal conditions of nesting beaches will outpace phenotypic adaption and require human intervention. For these reasons, we estimated sex ratios and physical condition of hatchling hawksbills under natural and manipulated conditions and generated and analyzed thermal profiles of hawksbill nest environments within highly threatened mangrove ecosystems at Bahía de Jiquilisco, El Salvador, and Estero Padre Ramos, Nicaragua. Hawksbill clutches protected in situ at both sites incubated at higher temperatures, yielded lower hatching success, produced a higher percentage of female hatchlings, and produced less fit offspring than clutches relocated to hatcheries. We detected cooler sand temperatures in woody vegetation (i.e., coastal forest and small-scale plantations of fruit trees) and hatcheries than in other monitored nest environments, with higher temperatures at the deeper depth. Our findings indicate that mangrove ecosystems present a number of biophysical (e.g., insular nesting beaches and shallow water table) and human-induced (e.g., physical barriers and deforestation) constraints that, when coupled with the unique life history of hawksbills in this region, may limit behavioral compensatory responses by the species to projected temperature increases at nesting beaches. We contend that egg relocation can contribute significantly to recovery efforts in a changing climate under appropriate circumstances.
Collapse
Affiliation(s)
- Michael J. Liles
- Asociación ProCostaSan SalvadorEl Salvador
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Tarla Rai Peterson
- Department of Communication, Environmental Science and Engineering ProgramUniversity of Texas at El PasoEl PasoTexas
| | - Jeffrey A. Seminoff
- National Oceanic and Atmospheric Administration – National Marine Fisheries ServiceSouthwest Fisheries Science CenterLa JollaCalifornia
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Alexander R. Gaos
- Department of BiologySan Diego State UniversitySan DiegoCalifornia
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Eduardo Altamirano
- Fauna and Flora InternationalManaguaNicaragua
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Ana V. Henríquez
- Asociación ProCostaSan SalvadorEl Salvador
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Velkiss Gadea
- Fauna and Flora InternationalManaguaNicaragua
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Sofía Chavarría
- Asociación ProCostaSan SalvadorEl Salvador
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - José Urteaga
- School of Earth, Energy & Environmental SciencesStanford UniversityStanfordCalifornia
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Bryan P. Wallace
- Conservation Science Partners, Inc.Fort CollinsColorado
- Nicholas School of the EnvironmentDuke University Marine LabBeaufortNorth Carolina
- Eastern Pacific Hawksbill InitiativeSan DiegoCalifornia
| | - Markus J. Peterson
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexas
| |
Collapse
|
40
|
Tiatragul S, Hall JM, Pavlik NG, Warner DA. Lizard nest environments differ between suburban and forest habitats. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractNesting success is critical for oviparous species to maintain viable populations. Many species often do not provide parental care (e.g. oviparous reptiles), so embryos are left to develop in the prevailing conditions of the nest. For species that occupy diverse habitats, embryos must be able to complete development across a broad range of environmental conditions. Although much research has investigated how environmental conditions influence embryo development, we know little about how nest conditions differ between diverse habitats. Anolis lizards are commonly found in various habitats including those heavily modified by humans (e.g. cities). We describe nest sites of anoles in two different habitat types: a suburban area and a nearby forest. The suburban area had less total nesting habitat but a greater variety of microenvironment conditions for females to use for nesting, compared to the forest. Suburban nests were warmer and drier with greater thermal variance compared to forest nests. Finally, we use data from the literature to predict how nest conditions may influence development. Our study provides the first quantitative assessment of anole nest sites in human-modified environments and shows how suburban habitats may generate variation in developmental rate.
Collapse
Affiliation(s)
- Sarin Tiatragul
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Joshua M Hall
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
41
|
Diele-Viegas LM, Rocha CFD. Unraveling the influences of climate change in Lepidosauria (Reptilia). J Therm Biol 2018; 78:401-414. [PMID: 30509664 DOI: 10.1016/j.jtherbio.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.
Collapse
|
42
|
Montero N, dei Marcovaldi MAG, Lopez–Mendilaharsu M, Santos AS, Santos AJB, Fuentes MMPB. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS One 2018; 13:e0204188. [PMID: 30408043 PMCID: PMC6224045 DOI: 10.1371/journal.pone.0204188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 01/27/2023] Open
Abstract
Climate change is expected to impact animals that are heavily reliant on environmental factors, such as sea turtles, since the incubation of their eggs, hatching success and sex ratio are influenced by the environment in which eggs incubate. As climate change progresses it is therefore important to understand how climatic conditions influence their reproductive output and the ramifications to population stability. Here, we examined the influences of five climatic variables (air temperature, accumulated and average precipitation, humidity, solar radiation, and wind speed) at different temporal scales on hawksbill sea turtle (Eretmochelys imbricata) hatchling production at ten nesting beaches within two regions of Brazil (five nesting beaches in Rio Grande do Norte and five in Bahia). Air temperature and accumulated precipitation were the main climatic drivers of hawksbill hatching success (number of eggs hatched within a nest) across Brazil and in Rio Grande do Norte, while air temperature and average precipitation were the main climatic drivers of hatching success at Bahia. Solar radiation was the main climatic driver of emergence success (number of hatchlings that emerged from total hatched eggs within a nest) at both regions. Warmer temperatures and higher solar radiation had negative effects on hatchling production, while wetter conditions had a positive effect. Conservative and extreme climate scenarios show air temperatures are projected to increase at this site, while precipitation projections vary between scenarios and regions throughout the 21st century. We predicted hatching success of undisturbed nests (no recorded depredation or storm-related impacts) will decrease in Brazil by 2100 as a result of how this population is influenced by local climate. This study shows the determining effects of different climate variables and their combinations on an important and critically endangered marine species.
Collapse
Affiliation(s)
- Natalie Montero
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| | | | | | | | | | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
43
|
Calderón-Espinosa ML, Jerez A, Medina-Rangel GF. Living in the Extremes: The Thermal Ecology of Communal Nests of the Highland Andean Lizard Anadia bogotensis (Squamata: Gymnophthalmidae). CURRENT HERPETOLOGY 2018. [DOI: 10.5358/hsj.37.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Martha L. Calderón-Espinosa
- Grupo de Biodiversidad y Sistemática Molecular, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, COLOMBIA
| | - Adriana Jerez
- Grupo de Biodiversidad y Sistemática Molecular, Laboratorio de Ecología Evolutiva, Departamento de Biología. Facultad de Ciencias, Universidad Nacional del Colombia, Sede Bogotá, COLOMBIA
| | - Guido F. Medina-Rangel
- Grupo de Biodiversidad y Sistemática Molecular, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, COLOMBIA
| |
Collapse
|
44
|
Hall JM, Warner DA. Thermal spikes from the urban heat island increase mortality and alter physiology of lizard embryos. J Exp Biol 2018; 221:221/14/jeb181552. [DOI: 10.1242/jeb.181552] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023]
Abstract
ABSTRACT
Effects of global change (i.e. urbanization, climate change) on adult organisms are readily used to predict the persistence of populations. However, effects on embryo survival and patterns of development are less studied, even though embryos are particularly sensitive to abiotic conditions that are altered by global change (e.g. temperature). In reptiles, relatively warm incubation temperatures increase developmental rate and often enhance fitness-relevant phenotypes, but extremely high temperatures cause death. Due to the urban heat island effect, human-altered habitats (i.e. cities) potentially create unusually warm nest conditions that differ from adjacent natural areas in both mean and extreme temperatures. Such variation may exert selection pressures on embryos. To address this, we measured soil temperatures in places where the Puerto Rican crested anole lizard (Anolis cristatellus) nests in both city and forest habitats. We bred anoles in the laboratory and subjected their eggs to five incubation treatments that mimicked temperature regimes from the field, three of which included brief exposure to extremely high temperatures (i.e. thermal spikes) measured in the city. We monitored growth and survival of hatchlings in the laboratory for 3 months and found that warmer, city temperatures increase developmental rate, but brief, thermal spikes reduce survival. Hatchling growth and survival were unaffected by incubation treatment. The urban landscape can potentially create selection pressures that influence organisms at early (e.g. embryo) and late life stages. Thus, research aimed at quantifying the impacts of urbanization on wildlife populations must include multiple life stages to gain a comprehensive understanding of this important aspect of global change.
Collapse
Affiliation(s)
- Joshua M. Hall
- Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Daniel A. Warner
- Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
45
|
Nelson NJ, Keall SN, Refsnider JM, Carter AL. Behavioral variation in nesting phenology may offset sex-ratio bias in tuatara. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:373-381. [PMID: 29939491 DOI: 10.1002/jez.2196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/30/2018] [Indexed: 11/08/2022]
Abstract
The nest environment for eggs of reptiles has lifelong implications for offspring performance and success, and, ultimately, for population viability and species distributions. However, understanding the various abiotic and biotic drivers of nesting is complex, particularly regarding variation in nesting behavior of females and consequences for sex ratios in species with temperature-dependent sex determination (TSD). We investigated how nest construction and nesting phenology affect the incubation environment of a reptile with TSD, the tuatara (Sphenodon punctatus), a species that is at risk from climate-mediated male bias in population sex ratios. Using longitudinal behavioral data, we addressed the following questions. (1) Does nesting behavior vary with seasonal or location cues? (2) Does variation in nesting phenology or nest construction affect the incubation environment? We aimed to investigate whether female tuatara could modify nesting behavior to respond to novel environments, including a warming climate, allowing for successful incubation and balanced population sex ratios, maintaining population viability throughout their historic range. We predicted that earlier nesting after warm winters increased the likelihood that females will be produced, despite the sex determining system where males are produced from warmer temperatures. Further research is needed to understand the extent to which nesting behavior varies by individual through time, and across the range of tuatara, and the importance of habitat variability in maintaining production of females under future climate warming.
Collapse
Affiliation(s)
- Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Susan N Keall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - Anna L Carter
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, Indiana
| |
Collapse
|
46
|
Refsnider JM, Qian SS, Streby HM, Carter SE, Clifton IT, Siefker AD, Vazquez TK. Reciprocally transplanted lizards along an elevational gradient match light environment use of local lizards via phenotypic plasticity. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Song S. Qian
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| | - Henry M. Streby
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| | - Sarah E. Carter
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| | - Ian T. Clifton
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| | - Adam D. Siefker
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| | - Tyara K. Vazquez
- Department of Environmental SciencesUniversity of Toledo Toledo OH USA
| |
Collapse
|
47
|
Sparkman AM, Chism KR, Bronikowski AM, Brummett LJ, Combrink LL, Davis CL, Holden KG, Kabey NM, Miller DAW. Use of field-portable ultrasonography reveals differences in developmental phenology and maternal egg provisioning in two sympatric viviparous snakes. Ecol Evol 2018; 8:3330-3340. [PMID: 29607028 PMCID: PMC5869298 DOI: 10.1002/ece3.3928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/30/2022] Open
Abstract
A thorough understanding of the life cycles underlying the demography of wild species is limited by the difficulty of observing hidden life‐history traits, such as embryonic development. Major aspects of embryonic development, such as the rate and timing of development, and maternal–fetal interactions can be critical features of early‐life fitness and may impact population trends via effects on individual survival. While information on development in wild snakes and lizards is particularly limited, the repeated evolution of viviparity and diversity of reproductive mode in this clade make it a valuable subject of study. We used field‐portable ultrasonography to investigate embryonic development in two sympatric garter snake species, Thamnophis sirtalis and Thamnophis elegans in the Sierra Nevada mountains of California. This approach allowed us to examine previously hidden reproductive traits including the timing and annual variation in development and differences in parental investment in young. Both species are viviparous, occupy similar ecological niches, and experience the same annual environmental conditions. We found that T. sirtalis embryos were more developmentally advanced than T. elegans embryos during June of three consecutive years. We also found that eggs increased in volume more substantially across developmental stages in T. elegans than in T. sirtalis, indicating differences in maternal provisioning of embryos via placental transfer of water. These findings shed light on interspecific differences in parental investment and timing of development within the same environmental context and demonstrate the value of field ultrasonography for pursuing questions relating to the evolution of reproductive modes, and the ecology of development.
Collapse
Affiliation(s)
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA USA
| | | | | | - Courtney L Davis
- Department of Ecosystem Science and Management Pennsylvania State University University Park PA USA.,Intercollege Graduate Ecology Program Pennsylvania State University University Park PA USA
| | - Kaitlyn G Holden
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA USA
| | - Nicole M Kabey
- Department of Biology Westmont College Santa Barbara CA USA
| | - David A W Miller
- Department of Ecosystem Science and Management Pennsylvania State University University Park PA USA
| |
Collapse
|
48
|
Warner DA, Mitchell TS, Bodensteiner BL, Janzen FJ. The effect of hormone manipulations on sex ratios varies with environmental conditions in a turtle with temperature-dependent sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:172-181. [PMID: 29356364 DOI: 10.1002/jez.2085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 02/03/2023]
Abstract
Exogenous application of steroids and related substances to eggs affects offspring sex ratios in species with temperature-dependent sex determination (TSD). Laboratory studies demonstrate that this effect is most pronounced near the constant temperature that produces 1:1 sex ratios (i.e., pivotal temperature). However, the impact of such chemicals on sex determination under natural nest temperatures (which fluctuate daily) is unknown, but could provide insight into the relative contributions of these two factors under natural conditions. We applied estradiol (E2) and an aromatase inhibitor (fadrozole) to eggs of the painted turtle (Chrysemys picta), a species with TSD, and allowed eggs to incubate under natural conditions during two field seasons (in 2012 and 2013). Exogenous E2, fadrozole, and nest temperature contributed to variation in offspring sex ratio, but the relative contributions of these factors differed between years. In 2012, a much hotter than average season, sex ratios were heavily female biased regardless of nest temperature and chemical treatment. However, in 2013, a milder season, both nest temperature and chemical treatment were important. Moreover, a significant interaction between nest temperature and treatment demonstrated that exogenous estradiol induces female development regardless of nest temperature, but aromatase inhibition widens the range of temperatures that produces both sexes.
Collapse
Affiliation(s)
- Daniel A Warner
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa.,Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Timothy S Mitchell
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa.,Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Brooke L Bodensteiner
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Fredric J Janzen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
49
|
Lovich JE, Averill-Murray RC, Agha M, Ennen JR, Austin M. Variation in Annual Clutch Phenology of Sonoran Desert Tortoises (Gopherus morafkai) in Central Arizona. HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-17-00007.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jeffrey E. Lovich
- US Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive, MS-9394, Flagstaff, AZ 86001, USA
| | | | - Mickey Agha
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joshua R. Ennen
- Tennessee Aquarium Conservation Institute, 175 Baylor School Road, Chattanooga, TN 37405, USA
| | - Meaghan Austin
- Trileaf Environmental Corporation, 2121 West Chandler Boulevard, Suite 203, Chandler, AZ 85224, USA
| |
Collapse
|
50
|
Carlo MA, Riddell EA, Levy O, Sears MW. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecol Lett 2017; 21:104-116. [DOI: 10.1111/ele.12877] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Michael A. Carlo
- Department of Biological Sciences Clemson University Clemson SC29634 USA
| | - Eric A. Riddell
- Department of Biological Sciences Clemson University Clemson SC29634 USA
| | - Ofir Levy
- School of Life Sciences Arizona State University Tempe AZ85287 USA
| | - Michael W. Sears
- Department of Biological Sciences Clemson University Clemson SC29634 USA
| |
Collapse
|