1
|
Lv J, Wang H, Chang N, Li H, Shi C. Effects of Datura stramonium L. Invasion into Different Habitats on Native Plant Functional Traits and Soil Carbon, Nitrogen and Phosphorus Stoichiometric Characteristics. BIOLOGY 2023; 12:1497. [PMID: 38132323 PMCID: PMC10740971 DOI: 10.3390/biology12121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Datura stramonium is an invasive herb of the family Solanaceae from Mexico and has been invading seriously in China. The effects of invasive plants on the functional traits of native plants and the stoichiometric characteristics of soil carbon, nitrogen and phosphorus in different habitats were explored by taking the invasive plant D. stramonium and coexisting native plants as the research object. The species, quantity and height of plants in sample plots in farmland, wasteland and roadside habitats were investigated and the specific leaf area (SLA), leaf carbon content (C), nitrogen content (N), carbon-to-nitrogen ratio (C:N), construction cost (CCmass) and stoichiometric characteristics of soil carbon (C), nitrogen (N) and phosphorus (P) were analyzed. The results showed that compared with the noninvaded area, the species and quantity of native plants decreased in the invaded area, and SLA and leaf N showed a decreasing trend. The plant height of native plants in the invaded area of the farmland and wasteland decreased by 23.19% and 15.26%, respectively, while the height of native plants along the roadside increased by 95.91%. The leaf C:N ratio of native plants in the invaded area along the roadside significantly increased by 54.07%. The plant height and leaf N of D. stramonium in the three habitats were higher than those of the native plants. The soil N in the invaded area of the three habitats increased, with the soil N in the farmland increasing by 21.05%, in the wasteland increasing by 9.82% and along the roadside significantly increasing by 46.85%. The soil carbon-to-phosphorus ratio (C:P) in the three habitats showed an increasing trend. The soil C:P ratio in the farmland increased by 62.45%, in the wasteland it increased by 11.91% and along the roadside it significantly increased by 71.14%. These results showed that invasion by D. stramonium has a great effect on the local ecosystem, and it has a high ability to capture resources. D. stramonium can improve its own competitiveness by enhancing invasiveness by changing the functional traits of native plants and the stoichiometric characteristics of soil C, N and P, which may be the reason for its invasive success.
Collapse
Affiliation(s)
- Juan Lv
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; (J.L.); (H.W.); (H.L.)
| | - Haitao Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; (J.L.); (H.W.); (H.L.)
| | - Na Chang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Huaiyue Li
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; (J.L.); (H.W.); (H.L.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; (J.L.); (H.W.); (H.L.)
| |
Collapse
|
2
|
Root‐Bernstein M, Muñoz C, Armesto JJ. Disturbance and the (surprising?) role of ecosystem engineering in explaining spatial patterns of non-native plant establishment. Ecol Evol 2021; 11:11730-11738. [PMID: 34522336 PMCID: PMC8427612 DOI: 10.1002/ece3.7915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Different conceptions of disturbance differ in the degree to which they appeal to mechanisms that are general and equivalent, or species-, functional group-, or interaction-specific. Some concepts of disturbance, for example, predict that soil disturbances and herbivory have identical impacts on species richness via identical mechanisms (reduction in biomass and in competition). An alternative hypothesis is that the specific traits of disturbance agents (small mammals) and plants differentially affect the richness or abundance of different plant groups. We tested these hypotheses on a degu (Octodon degus) colony in central Chile. We ask whether native and non-native forbs respond differently to degu bioturbation on runways versus herbivory on grazing lawns. We ask whether this can explain the increase in non-native plants on degu colonies. We found that biopedturbation did not explain the locations of non-native plants. We did not find direct evidence of grazing increasing non-native herbs either, but a grazing effect appears to be mediated by grass, which is the dominant cover. Further, we provide supplementary evidence to support our interpretation that a key mechanism of non-native spread is the formation of dry soil conditions on grazing lawns. Thus, ecosystem engineering (alteration of soil qualities) may be an outcome of disturbances, in which each interacts with specific plant traits, to create the observed pattern of non-native spread in the colony. Based on these results, we propose to extend Jentsch and White (Ecology, 100, 2019, e02734) concept of combined pulse/ disturbance events to the long-term process duality of ecosystem engineering/ disturbance.
Collapse
Affiliation(s)
- Meredith Root‐Bernstein
- CNRSMusée National d’Histoire NaturelleParisFrance
- Instituto de Ecología y BiodiversidadSantiagoChile
- Center for Sustainability and Applied EcologySantiagoChile
| | - César Muñoz
- Department of EcologyPontificia Universidad Católica de ChileSantiagoChile
| | - Juan J. Armesto
- Instituto de Ecología y BiodiversidadSantiagoChile
- Department of EcologyPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
3
|
Farías AA, Armas C, Gaxiola A, Cea AP, Luis Cortés J, López RP, Casanoves F, Holmgren M, Meserve PL, Gutiérrez JR, Kelt DA. Species interactions across trophic levels mediate rainfall effects on dryland vegetation dynamics. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ariel A. Farías
- Centro Universitario Regional del Este (CURE) Universidad de la República Tacuarembó s/n, entre Avenida Artigas y Aparicio Saravia MaldonadoCP 20100Uruguay
- Center of Applied Ecology and Sustainability (CAPES) Pontificia Universidad Católica de Chile Alameda 340 PO‐Box 114‐D SantiagoCP 6513677Chile
- Centro de Investigación e Innovación para el Cambio Climático (CIICC) Universidad Santo Tomás Santiago Chile
| | - Cristina Armas
- Instituto de Ecología y Biodiversidad (IEB) Casilla 653 Santiago de Chile Chile
- Estación Experimental de Zonas Áridas‐CSIC Carretera de Sacramento s/n Almería04120Spain
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
| | - Aurora Gaxiola
- Instituto de Ecología y Biodiversidad (IEB) Casilla 653 Santiago de Chile Chile
- Departamento de Ecología Pontificia Universidad Católica de Chile Casilla 114‐D Santiago Chile
| | - Alex P. Cea
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
| | - Jose Luis Cortés
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
| | - Ramiro P. López
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
- Herbario Nacional de Bolivia Universidad Mayor de San Andrés (UMSA) Campus Universitario, Calle 27, Cotacota La Paz Bolivia
| | - Fernando Casanoves
- CATIE‐Centro Agronómico Tropical de Investigación y Enseñanza Turrialba30501Costa Rica
| | - Milena Holmgren
- Department of Environmental Sciences Wageningen University Wageningen The Netherlands
| | - Peter L. Meserve
- Department of Biological Sciences University of Idaho Moscow Idaho83844USA
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Universidad de La Serena Casilla 554 La Serena Chile
| | - Julio R. Gutiérrez
- Instituto de Ecología y Biodiversidad (IEB) Casilla 653 Santiago de Chile Chile
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Universidad de La Serena Casilla 554 La Serena Chile
| | - Douglas A. Kelt
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Universidad de La Serena Casilla 554 La Serena Chile
- Department of Wildlife, Fish, and Conservation Biology University of California One Shields Avenue Davis California95616USA
| |
Collapse
|
4
|
Chidawanyika F, Mudavanhu P, Nyamukondiwa C. Global Climate Change as a Driver of Bottom-Up and Top-Down Factors in Agricultural Landscapes and the Fate of Host-Parasitoid Interactions. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00080] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
5
|
Grinath JB, Larios L, Prugh LR, Brashares JS, Suding KN. Environmental gradients determine the potential for ecosystem engineering effects. OIKOS 2019. [DOI: 10.1111/oik.05768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua B. Grinath
- Inst. of Arctic and Alpine Research, Univ. of Colorado Boulder Boulder CO USA
- Dept of Biology, Middle Tennessee State Univ PO Box 60 Murfreesboro, TN 37132 USA
| | - Loralee Larios
- Dept of Botany and Plant Sciences, Univ. of California Riverside Riverside CA USA
| | - Laura R. Prugh
- School of Environmental and Forest Sciences, Univ. of Washington Seattle WA USA
| | - Justin S. Brashares
- Dept of Environmental Science, Policy and Management, Univ. of California Berkeley Berkeley CA USA
| | - Katharine N. Suding
- Inst. of Arctic and Alpine Research, Univ. of Colorado Boulder Boulder CO USA
- Ecology and Evolutionary Biology, Univ. of Colorado Boulder Boulder CO USA
| |
Collapse
|
6
|
Nater CR, van Benthem KJ, Canale CI, Schradin C, Ozgul A. Density feedbacks mediate effects of environmental change on population dynamics of a semidesert rodent. J Anim Ecol 2018; 87:1534-1546. [PMID: 30058150 DOI: 10.1111/1365-2656.12888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 07/22/2018] [Indexed: 11/29/2022]
Abstract
Population dynamics are the result of an interplay between extrinsic and intrinsic environmental drivers. Predicting the effects of environmental change on wildlife populations therefore requires a thorough understanding of the mechanisms through which different environmental drivers interact to generate changes in population size and structure. In this study, we disentangled the roles of temperature, food availability and population density in shaping short- and long-term population dynamics of the African striped mouse, a small rodent inhabiting a semidesert with high intra- and interannual variation in environmental conditions. We parameterized a female-only stage-structured matrix population model with vital rates depending on temperature, food availability and population density, using monthly mark-recapture data from 1609 mice trapped over 9 years (2005-2014). We then applied perturbation analyses to determine relative strengths and demographic pathways of these drivers in affecting population dynamics. Furthermore, we used stochastic population projections to gain insights into how three different climate change scenarios might affect size, structure and persistence of this population. We identified food availability, acting through reproduction, as the main driver of changes in both short- and long-term population dynamics. This mechanism was mediated by strong density feedbacks, which stabilized the population after high peaks and allowed it to recover from detrimental crashes. Density dependence thus buffered the population against environmental change, and even adverse climate change scenarios were predicted to have little effect on population persistence (extinction risk over 100 years <5%) despite leading to overall lower abundances. Explicitly linking environment-demography relationships to population dynamics allowed us to accurately capture past population dynamics. It further enabled establishing the roles and relative importances of extrinsic and intrinsic environmental drivers, and we conclude that doing this is essential when investigating impacts of climate change on wildlife populations.
Collapse
Affiliation(s)
- Chloé R Nater
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Koen J van Benthem
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Cindy I Canale
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Carsten Schradin
- IPHC, UNISTRA, CNRS, Strasbourg, France.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Taig-Johnston M, Strom MK, Calhoun K, Nowak K, Ebensperger LA, Hayes L. The ecological value of long-term studies of birds and mammals in Central America, South America and Antarctica. REVISTA CHILENA DE HISTORIA NATURAL 2017. [DOI: 10.1186/s40693-017-0070-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
de Miguel JM, Martín-Forés I, Acosta-Gallo B, del Pozo A, Ovalle C, Sánchez-Jardón L, Castro I, Casado MA. Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands. ACTA OECOLOGICA 2016. [DOI: 10.1016/j.actao.2016.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kremer LP, da Rocha RM. The biotic resistance role of fish predation in fouling communities. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1210-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Sotomayor DA, Lortie CJ. Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere 2015. [DOI: 10.1890/es14-00117.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Root-Bernstein M, Bennett M, Armesto JJ, Ebensperger LA. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot. Glob Ecol Conserv 2014. [DOI: 10.1016/j.gecco.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Anton A, Simpson MS, Vu I. Environmental and biotic correlates to lionfish invasion success in Bahamian coral reefs. PLoS One 2014; 9:e106229. [PMID: 25184250 PMCID: PMC4153550 DOI: 10.1371/journal.pone.0106229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.
Collapse
Affiliation(s)
- Andrea Anton
- Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Michael S. Simpson
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ivana Vu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Kelt DA, Meserve PL. Status and challenges for conservation of small mammal assemblages in South America. Biol Rev Camb Philos Soc 2014; 89:705-22. [PMID: 24450972 DOI: 10.1111/brv.12080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
Abstract
South America spans about 44° latitude, covers almost 18 million km(2) , and is second only to Africa in continental mammal species richness. In spite of this richness, research on the status of this fauna and on the nature and magnitude of contemporary threats remains limited. Distilling threats to this diverse fauna at a continental scale is challenging, in part because of the limited availability of rigorous studies. Recognizing this constraint, we summarize key threats to small mammals in South America, emphasizing the roles of habitat loss and degradation, direct persecution, and the increasing threat of climate change. We focus on three regional 'case studies': the tropical Andes, Amazonia and adjacent lowland regions, and the southern temperate region. We close with a brief summary of recent findings at our long-term research site in north-central Chile as they pertain to projected threats to this fauna. Habitat alteration is a pervasive threat that has been magnified by market forces and globalization (e.g. extensive agricultural development in Amazonia), and threatens increasing numbers of populations and species. Climate change poses even greater threats, from changes in rainfall and runoff regimes and resulting changes in vegetative structure and composition to secondary influences on fire dynamics. It is likely that many changes have yet to be recognized, but existing threats suggest that the future may bring dramatic changes in the distribution of many mammal taxa, although it is not clear if key habitat elements (vegetation) will respond as rapidly as climatic factors, leading to substantial uncertainty. Climate change is likely to result in 'winners' and 'losers' but available information precludes detailed assessment of which species are likely to fall into which category. In the absence of long-term monitoring and applied research to characterize these threats more accurately, and to develop strategies to reduce their impacts, managers already are being faced with daunting challenges. As the line between 'pure' and 'applied' research blurs in the face of converging interests of scientists and society we hope that solutions to these critical issues will be incorporated in addressing anticipated conservation crises.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, One Shields Avenue, Davis, CA, 95616-5270, U.S.A
| | | |
Collapse
|
14
|
Root-Bernstein M, Armesto J. Selection and implementation of a flagship fleet in a locally undervalued region of high endemicity. AMBIO 2013; 42:776-87. [PMID: 23479265 PMCID: PMC3758814 DOI: 10.1007/s13280-013-0385-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/13/2012] [Accepted: 01/31/2013] [Indexed: 05/10/2023]
Abstract
Flagships are one conservation education tool. We present a proposed flagship species fleet for environmental education in central Chile. Our methods followed recent flagship guidelines. We present our selection process and a detailed justification for the fleet of flagship species that we selected. Our results are a list of eight flagship species forming a flagship fleet, including two small- and medium-sized mammals, the degu (Octodon degus) and the culpeo fox (Lycalopex culpeaus), two birds, the turca (Pteroptochos megapoidius) and the burrowing owl (Athene cunicularia), the Chilean iguana (Calopistes palluma), the tarantula (Grammostola mollicoma), and two trees, the litre (Lithrea caustica) and the espino (Acacia caven). We then describe how these flagships can be deployed most effectively, describing their audience, effective narrative frames, and modes of presentation. We conclude that general selection rules paired with social science background data allow for an efficient selection process.
Collapse
Affiliation(s)
- Meredith Root-Bernstein
- Department of Ecology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,
| | | |
Collapse
|
15
|
Zhang XD, Jia X, Chen YY, Shao JJ, Wu XR, Shang L, Li B. Crabs mediate interactions between native and invasive salt marsh plants: a mesocosm study. PLoS One 2013; 8:e74095. [PMID: 24023926 PMCID: PMC3762776 DOI: 10.1371/journal.pone.0074095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Soil disturbance has been widely recognized as an important factor influencing the structure and dynamics of plant communities. Although soil reworkers were shown to increase habitat complexity and raise the risk of plant invasion, their role in regulating the interactions between native and invasive species remains unclear. We proposed that crab activities, via improving soil nitrogen availability, may indirectly affect the interactions between invasive Spartina alterniflora and native Phragmites australis and Scirpus mariqueter in salt marsh ecosystems. We conducted a two-year mesocosm experiment consisting of five species combinations, i.e., monocultures of three species and pair-wise mixtures of invasive and native species, with crabs being either present or absent for each combination. We found that crabs could mitigate soil nitrogen depletion in the mesocosm over the two years. Plant performance of all species, at both the ramet-level (height and biomass per ramet) and plot-level (density, total above- and belowground biomass), were promoted by crab activities. These plants responded to crab disturbance primarily by clonal propagation, as plot-level performance was more sensitive to crabs than ramet-level. Moreover, crab activities altered the competition between Spartina and native plants in favor of the former, since Spartina was more promoted than native plants by crab activities. Our results suggested that crab activities may increase the competition ability of Spartina over native Phragmites and Scirpus through alleviating soil nitrogen limitation.
Collapse
Affiliation(s)
- Xiao-dong Zhang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
- Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
| | - Xin Jia
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yang-yun Chen
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Jun-jiong Shao
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Xin-ru Wu
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Lei Shang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Bo Li
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
16
|
Pawlik JR, Loh TL, McMurray SE, Finelli CM. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 2013; 8:e62573. [PMID: 23667492 PMCID: PMC3648561 DOI: 10.1371/journal.pone.0062573] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022] Open
Abstract
Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America.
| | | | | | | |
Collapse
|
17
|
Effects of the Anuran Tadpole Assemblage and Nutrient Enrichment on Freshwater Snail Abundance (Physella sp.). AMERICAN MIDLAND NATURALIST 2012. [DOI: 10.1674/0003-0031-168.2.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Meserve PL, Dickman CR, Kelt DA. Small mammal community structure and dynamics in aridlands: overall patterns and contrasts with Southern Hemispheric systems. J Mammal 2011. [DOI: 10.1644/11-mamm-s-186.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Kelt DA. Comparative ecology of desert small mammals: a selective review of the past 30 years. J Mammal 2011. [DOI: 10.1644/10-mamm-s-238.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Meserve PL, Kelt DA, Previtali MA, Milstead WB, Gutiérrez JR. Global climate change and small mammal populations in north-central Chile. J Mammal 2011. [DOI: 10.1644/10-mamm-s-267.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|