1
|
Werner CM, Young TP, Stuble KL. Year effects drive beta diversity, but unevenly across plant community types. Ecology 2024; 105:e4188. [PMID: 37877213 DOI: 10.1002/ecy.4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 10/26/2023]
Abstract
Year of establishment can be a critical driver of plant communities with the establishment stage of community development particularly susceptible to factors including ambient rain, temperature, and other temporally variable drivers (e.g., seed and seedling predators). However, while year effects have been shown to drive community structure at local (patch) scales, it is yet unexplored how these within-patch effects scale up to drive landscape-level patterns of biodiversity. These dynamics are likely to be critical but are overlooked in many systems including those with high-frequency disturbance regimes or active management. Here we leveraged a series of field-based grassland mesocosms established identically at three sites across 5 years, and each monitored for 4-8 years. We compared the strength of these temporal and spatial drivers (year effects and site effects) on consequent patterns of spatial and temporal variability (beta diversity and turnover) between plots seeded with native perennial species versus those seeded with nonnative annual species. The composition of plots seeded with perennial species showed strong effects of planting year and consequently exhibited higher beta diversity within sites (across mesocosms established in five different years within sites), while plots seeded with annual species had higher between-site variation but low beta diversity within sites. Plots with annual species were also more temporally variable than plots with perennial species. These findings have important implications for our understanding of key drivers of biodiversity across landscapes. Specifically, we showed that variable trajectories in community composition generated by site and year effects during establishment can promote beta diversity across landscapes dominated by perennial species, but are considerably less impactful in annual-dominated systems. These findings further our understanding of the importance of assembly dynamics on landscape-scale patterns of diversity, and have important management implications for restoration efforts.
Collapse
Affiliation(s)
- Chhaya M Werner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Truman P Young
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | | |
Collapse
|
2
|
Hallett LM, Aoyama L, Barabás G, Gilbert B, Larios L, Shackelford N, Werner CM, Godoy O, Ladouceur ER, Lucero JE, Weiss-Lehman CP, Chase JM, Chu C, Harpole WS, Mayfield MM, Faist AM, Shoemaker LG. Restoration ecology through the lens of coexistence theory. Trends Ecol Evol 2023; 38:1085-1096. [PMID: 37468343 DOI: 10.1016/j.tree.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.
Collapse
Affiliation(s)
- Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA.
| | - Lina Aoyama
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA
| | - György Barabás
- Division of Ecological and Environmental Modeling (ECOMOD), Dept. IFM, Linköping University, SE-58183 Linköping, Sweden; Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Loralee Larios
- Department of Botany and Plant Sciences, University of California Riverside, CA 92521, USA
| | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chhaya M Werner
- University of Wyoming, Botany Department, Laramie, WY 82071, USA; Department of Environmental Science, Policy, & Sustainability, Southern Oregon University, Ashland, OR 97520, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, E-11510 Puerto Real, Spain
| | - Emma R Ladouceur
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Jacob E Lucero
- Department of Rangeland, Wildlife, and Fisheries Management, Texas A&M University, College Station, TX 77843, USA
| | | | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - W Stanley Harpole
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Margaret M Mayfield
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Akasha M Faist
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
3
|
Larios L, Hallett LM. Incorporating temporal dynamics to enhance grazing management outcomes for a long‐lived species. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Loralee Larios
- Department of Botany and Plant Sciences University of California Riverside CA USA
| | - Lauren M. Hallett
- Department of Biology and Environmental Studies Program University of Oregon Eugene OR USA
| |
Collapse
|
4
|
Questad EJ, Fitch RL, Paolini J, Hernández E, Suding KN. Nitrogen addition, not heterogeneity, alters the relationship between invasion and native decline in California grasslands. Oecologia 2021; 197:651-660. [PMID: 34642816 DOI: 10.1007/s00442-021-05049-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
The presence of invasive species reduces the growth and performance of native species; however, the linear or non-linear relationships between invasive abundance and native population declines are less often studied. We examine how the amount and spatial distribution of experimental N deposition influences the relationship between non-native, invasive annual grass abundance (Bromus hordeaceus and Bromus diandrus) and a dominant, native perennial grass species (Stipa pulchra) in California. We hypothesized that native populations would decline as invasion increased, and that high nitrogen availability would cause native species to decline at lower invasion levels. We predicted that the rate of population decline would be slower in heterogeneous, compared to homogeneous, environments. We employed a field experiment that manipulated the amount and spatial heterogeneity of N addition across a range of invasive/native-dominated communities. There were strong negative and non-linear associations between level of invasion and S. pulchra proportional change (PC). Stipa pulchra PC was more negative and seedling survival was lower when N was added, and the negative effects of N addition on PC became larger in the final year of the study when S. pulchra had the largest declines. There was not strong evidence showing reduced competition in heterogeneous, compared to homogeneous, N treatments. Soil moisture was similar between S. pulchra and B. hordeaceus plots under ambient N, but B. hordeaceus under added N reduced soil moisture. Under N addition, Bromus spp. take up N earlier, reduce soil moisture, and create dry conditions in which S. pulchra declines.
Collapse
Affiliation(s)
- Erin J Questad
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 W Temple Ave, Pomona, CA, 91768, USA.
| | - Robert L Fitch
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 W Temple Ave, Pomona, CA, 91768, USA.,Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, 5221 Cheadle Hall, Santa Barbara, CA, 93106, USA
| | - Joshua Paolini
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 W Temple Ave, Pomona, CA, 91768, USA
| | - Eliza Hernández
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 W Temple Ave, Pomona, CA, 91768, USA.,Environmental Studies Program, University of Oregon, 1585 E 13th Ave, Eugene, OR, 97403, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80303, USA
| |
Collapse
|
5
|
Song C, Uricchio LH, Mordecai EA, Saavedra S. Understanding the emergence of contingent and deterministic exclusion in multispecies communities. Ecol Lett 2021; 24:2155-2168. [PMID: 34288350 DOI: 10.1111/ele.13846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Competitive exclusion can be classified as deterministic or as historically contingent. While competitive exclusion is common in nature, it has remained unclear when multispecies communities formed by more than two species should be dominated by deterministic or contingent exclusion. Here, we take a fully parameterised model of an empirical competitive system between invasive annual and native perennial plant species to explain both the emergence and sources of competitive exclusion in multispecies communities. Using a structural approach to understand the range of parameters promoting deterministic and contingent exclusions, we then find heuristic theoretical support for the following three general conclusions. First, we find that the life-history of perennial species increases the probability of observing contingent exclusion by increasing their effective intrinsic growth rates. Second, we find that the probability of observing contingent exclusion increases with weaker intraspecific competition, and not with the level of hierarchical competition. Third, we find a shift from contingent exclusion to deterministic exclusion with increasing numbers of competing species. Our work provides a heuristic framework to increase our understanding about the predictability of species persistence within multispecies communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
6
|
DeMalach N, Shnerb N, Fukami T. Alternative States in Plant Communities Driven by a Life-History Trade-Off and Demographic Stochasticity. Am Nat 2021; 198:E27-E36. [PMID: 34260874 DOI: 10.1086/714418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractLife-history trade-offs among species are major drivers of community assembly. Most studies investigate how trade-offs promote deterministic coexistence of species. It remains unclear how trade-offs may instead promote historically contingent exclusion of species, where species dominance is affected by initial abundances, causing alternative community states via priority effects. Focusing on the establishment-longevity trade-off, in which high longevity is associated with low competitive ability during establishment, we study the transient dynamics and equilibrium outcomes of competitive interactions in a simulation model of plant community assembly. We show that in this model, the establishment-longevity trade-off is a necessary but not sufficient condition for alternative stable equilibria, which also require low fecundity for both species. An analytical approximation of our simulation model demonstrates that alternative stable equilibria are driven by demographic stochasticity in the number of seeds arriving at each establishment site. This site-scale stochasticity is affected only by fecundity and therefore occurs even in infinitely large communities. In many cases where the establishment-longevity trade-off does not cause alternative stable equilibria, the trade-off still decreases the rate of convergence toward the single equilibrium, resulting in decades of transient dynamics that can appear indistinguishable from alternative stable equilibria in empirical studies.
Collapse
|
7
|
Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sensing and In Situ Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12030412] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantifying western U.S. rangelands as a series of fractional components with remote sensing provides a new way to understand these changing ecosystems. Nine rangeland ecosystem components, including percent shrub, sagebrush (Artemisia), big sagebrush, herbaceous, annual herbaceous, litter, and bare ground cover, along with sagebrush and shrub heights, were quantified at 30 m resolution. Extensive ground measurements, two scales of remote sensing data from commercial high-resolution satellites and Landsat 8, and regression tree models were used to create component predictions. In the mapped area (2,993,655 km²), bare ground averaged 45.5%, shrub 15.2%, sagebrush 4.3%, big sagebrush 2.9%, herbaceous 23.0%, annual herbaceous 4.2%, and litter 15.8%. Component accuracies using independent validation across all components averaged R2 values of 0.46 and an root mean squared error (RMSE) of 10.37, and cross-validation averaged R2 values of 0.72 and an RMSE of 5.09. Component composition strongly varies by Environmental Protection Agency (EPA) level III ecoregions (n = 32): 17 are bare ground dominant, 11 herbaceous dominant, and four shrub dominant. Sagebrush physically covers 90,950 km², or 4.3%, of our study area, but is present in 883,449 km², or 41.5%, of the mapped portion of our study area.
Collapse
|
8
|
Song C, Barabás G, Saavedra S. On the Consequences of the Interdependence of Stabilizing and Equalizing Mechanisms. Am Nat 2019; 194:627-639. [PMID: 31613676 DOI: 10.1086/705347] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present an overlooked but important property of modern coexistence theory (MCT), along with two key new results and their consequences. The overlooked property is that stabilizing mechanisms (increasing species' niche differences) and equalizing mechanisms (reducing species' fitness differences) have two distinct sets of meanings within MCT: one in a two-species context and another in a general multispecies context. We demonstrate that the two-species framework is not a special case of the multispecies one, and therefore these two parallel frameworks must be studied independently. Our first result is that, using the two-species framework and mechanistic consumer-resource models, stabilizing and equalizing mechanisms exhibit complex interdependence, such that changing one will simultaneously change the other. Furthermore, the nature and direction of this simultaneous change sensitively depend on model parameters. The second result states that while MCT is often seen as bridging niche and neutral modes of coexistence by building a niche-neutrality continuum, the interdependence between stabilizing and equalizing mechanisms acts to break this continuum under almost any biologically relevant circumstance. We conclude that the complex entanglement of stabilizing and equalizing terms makes their impact on coexistence difficult to understand, but by seeing them as aggregated effects (rather than underlying causes) of coexistence, we may increase our understanding of ecological dynamics.
Collapse
|
9
|
Uricchio LH, Daws SC, Spear ER, Mordecai EA. Priority Effects and Nonhierarchical Competition Shape Species Composition in a Complex Grassland Community. Am Nat 2019; 193:213-226. [PMID: 30720356 PMCID: PMC8518031 DOI: 10.1086/701434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Niche and fitness differences control the outcome of competition, but determining their relative importance in invaded communities—which may be far from equilibrium—remains a pressing concern. Moreover, it is unclear whether classic approaches for studying competition, which were developed predominantly for pairs of interacting species, will fully capture dynamics in complex species assemblages. We parameterized a population-dynamic model using competition experiments of two native and three exotic species from a grassland community. We found evidence for minimal fitness differences or niche differences between the native species, leading to slow replacement dynamics and priority effects, but large fitness advantages allowed exotics to unconditionally invade natives. Priority effects driven by strong interspecific competition between exotic species drove single-species dominance by one of two exotic species in 80% of model outcomes, while a complex mixture of nonhierarchical competition and coexistence between native and exotic species occurred in the remaining 20%. Fungal infection, a commonly hypothesized coexistence mechanism, had weak fitness effects and is unlikely to substantially affect coexistence. In contrast to previous work on pairwise outcomes in largely native-dominated communities, our work supports a role for nearly neutral dynamics and priority effects as drivers of species composition in invaded communities.
Collapse
|
10
|
Lesage JC, Howard EA, Holl KD. Homogenizing biodiversity in restoration: the “perennialization” of California prairies. Restor Ecol 2018. [DOI: 10.1111/rec.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Josephine C. Lesage
- Department of Environmental Studies; University of California; 1156 High Street, Santa Cruz CA 95064 U.S.A
| | - Elizabeth A. Howard
- UC Santa Cruz Natural Reserves; 130 McAllister Way, Santa Cruz CA 95064 U.S.A
| | - Karen D. Holl
- Department of Environmental Studies; University of California; 1156 High Street, Santa Cruz CA 95064 U.S.A
| |
Collapse
|
11
|
Thomson DM, King RA, Schultz EL. Between invaders and a risky place: Exotic grasses alter demographic tradeoffs of native forb germination timing. Ecosphere 2017. [DOI: 10.1002/ecs2.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Diane M. Thomson
- W. M. Keck Science Department The Claremont Colleges 925 N. Mills Avenue Claremont California 91711 USA
| | - Rachel A. King
- W. M. Keck Science Department The Claremont Colleges 925 N. Mills Avenue Claremont California 91711 USA
| | - Emily L. Schultz
- W. M. Keck Science Department The Claremont Colleges 925 N. Mills Avenue Claremont California 91711 USA
| |
Collapse
|
12
|
Larios L, Hallett LM, Suding KN. Where and how to restore in a changing world: a demographic‐based assessment of resilience. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12946] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Loralee Larios
- Division of Biological Sciences University of Montana Missoula MT USA
- Department of Botany and Plant Sciences University of California Riverside CA USA
| | - Lauren M. Hallett
- Department of Ecology and Evolutionary Biology Institute of Arctic and Alpine Research University of Colorado Boulder CO USA
- Environmental Studies Program Department of Biology University of Oregon Eugene OR USA
| | - Katharine N. Suding
- Department of Ecology and Evolutionary Biology Institute of Arctic and Alpine Research University of Colorado Boulder CO USA
| |
Collapse
|