1
|
Gilson AR, McQuaid C. Top-down versus bottom-up: Grazing and upwelling regime alter patterns of primary productivity in a warm-temperate system. Ecology 2023; 104:e4180. [PMID: 37784259 DOI: 10.1002/ecy.4180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Community structure is driven by the interaction of physical processes and biological interactions that can vary across environmental gradients and the strength of top-down control is expected to vary along gradients of primary productivity. In coastal marine systems, upwelling drives regional resource availability through the bottom-up effect of nutrient subsidies. This alters rates of primary production and is expected to alter algae-herbivore interactions in rocky intertidal habitats. Despite the potential for upwelling to alter these interactions, the interaction of upwelling and grazing pressure is poorly understood, particularly for warm-temperate systems. Using in situ herbivore exclusion experiments replicated across multiple upwelling regimes, we investigated the effects of both grazing pressure, upwelling, and their interactions on the sessile invertebrate community and biomass of macroalgal communities in a warm-temperate system. The sessile invertebrate cover showed indirect effects of grazing, being consistently low where algal biomass was high at upwelling sites and at nonupwelling sites when grazers were excluded. The macroalgal cover was greater at upwelling sites when grazers were excluded and there was a strong effect of succession throughout the experimental period. Grazing effects were greater at upwelling sites, particularly during winter months. There was a nonsignificant trend toward greater grazing pressure on early than later successional stages. Our results show that the positive bottom-up effects of nutrient supply on algal production do not overwhelm top-down control in this warm-temperate system but do have knock-on consequences for invertebrates that compete with macroalgae for space. We speculate that global increases in air and sea surface temperatures in warm-temperate systems will promote top-down effects in upwelling regions by increasing herbivore metabolic and growth rates.
Collapse
Affiliation(s)
- Abby R Gilson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Christopher McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
2
|
Beheshti KM, Wasson K, Angelini C, Silliman BR, Hughes BB. Long‐term study reveals top‐down effect of crabs on a California salt marsh. Ecosphere 2021. [DOI: 10.1002/ecs2.3703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kathryn M. Beheshti
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95064 USA
| | - Kerstin Wasson
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95064 USA
- Elkhorn Slough National Estuarine Research Reserve Royal Oaks California 95076 USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences Engineering School of Sustainable Infrastructure and Environment University of Florida Gainesville Florida 32611 USA
| | - Brian R. Silliman
- Division of Marine Science and Conservation Nicholas School of the Environment Duke University Beaufort North Carolina 28516 USA
| | - Brent B. Hughes
- Department of Biology Sonoma State University Rohnert Park California 94928 USA
| |
Collapse
|
3
|
Miner CM, Burnaford JL, Ammann K, Becker BH, Fradkin SC, Ostermann-Kelm S, Smith JR, Whitaker SG, Raimondi PT. Latitudinal variation in long-term stability of North American rocky intertidal communities. J Anim Ecol 2021; 90:2077-2093. [PMID: 34002377 PMCID: PMC8518646 DOI: 10.1111/1365-2656.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Although long‐term ecological stability is often discussed as a community attribute, it is typically investigated at the species level (e.g. density, biomass), or as a univariate metric (e.g. species diversity). To provide a more comprehensive assessment of long‐term community stability, we used a multivariate similarity approach that included all species and their relative abundances. We used data from 74 sites sampled annually from 2006 to 2017 to examine broad temporal and spatial patterns of change within rocky intertidal communities along the west coast of North America. We explored relationships between community change (inverse of stability) and the following potential drivers of change/stability: (a) marine heatwave events; (b) three attributes of biodiversity: richness, diversity and evenness and (c) presence of the mussel, Mytilus californianus, a dominant space holder and foundation species in this system. At a broad scale, we found an inverse relationship between community stability and elevated water temperatures. In addition, we found substantial differences in stability among regions, with lower stability in the south, which may provide a glimpse into the patterns expected with a changing climate. At the site level, community stability was linked to high species richness and, perhaps counterintuitively, to low evenness, which could be a consequence of the dominance of mussels in this system. Synthesis. Assessments of long‐term stability at the whole‐community level are rarely done but are key to a comprehensive understanding of the impacts of climate change. In communities structured around a spatially dominant species, long‐term stability can be linked to the stability of this ‘foundation species’, as well as to traditional predictors, such as species richness.
Collapse
Affiliation(s)
- C Melissa Miner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jennifer L Burnaford
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Karah Ammann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Benjamin H Becker
- U.S. National Park Service, Point Reyes National Seashore, Point Reyes Station, CA, USA
| | - Steven C Fradkin
- U.S. National Park Service, Olympic National Park, Port Angeles, WA, USA
| | - Stacey Ostermann-Kelm
- U.S. National Park Service, Inventory and Monitoring Division, Thousand Oaks, CA, USA
| | - Jayson R Smith
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Stephen G Whitaker
- U.S. National Park Service, Channel Islands National Park, Ventura, CA, USA
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
4
|
Shelamoff V, Layton C, Tatsumi M, Cameron MJ, Wright J JT, Edgar GJ, Johnson CR. High kelp density attracts fishes except for recruiting cryptobenthic species. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105127. [PMID: 32889445 DOI: 10.1016/j.marenvres.2020.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
As foundation species, kelp support productive and species rich communities; however, the effects of kelp structure on mobile species within these complex natural systems are often difficult to assess. We used artificial reefs with transplanted kelp to quantify the influence of kelp patch size and density on fish assemblages including the arrival of recruiting cryptobenthic species. Large patches with dense kelp supported the highest abundance, species richness, and diversity of fishes, with the addition of dense kelp tripling biomass and doubling richness. The abundance of recruits in artificial collectors declined with patch size and was halved on reefs with sparse kelp compared to reefs with dense kelp or no kelp. These results highlight the importance of dense kelp cover in facilitating biodiversity and indicate that kelp addition could support the recovery of degraded coastal ecosystems. Kelp also apparently drives complex interactions affecting the recruitment/behaviour of some cryptobenthic species.
Collapse
Affiliation(s)
- Victor Shelamoff
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia.
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| | - Masayuki Tatsumi
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| | - Matthew J Cameron
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| | - Jeffrey T Wright J
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| | - Craig R Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart TAS, 7004, Australia
| |
Collapse
|
5
|
Hacker SD, Menge BA, Nielsen KJ, Chan F, Gouhier TC. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology 2019; 100:e02763. [PMID: 31127616 DOI: 10.1002/ecy.2763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/11/2022]
Abstract
Understanding the relative roles of species interactions and environmental factors in structuring communities has historically focused on local scales where manipulative experiments are possible. However, recent interest in predicting the effects of climate change and species invasions has spurred increasing attention to processes occurring at larger spatial and temporal scales. The "meta-ecosystem" approach is an ideal framework for integrating processes operating at multiple scales as it explicitly considers the influence of local biotic interactions and regional flows of energy, materials, and organisms on community structure. Using a comparative-experimental design, we asked (1) what is the relative importance of local biotic interactions and oceanic processes in determining rocky intertidal community structure in the low zone within the Northern California Current System, and (2) what factors are most important in regulating this structure and why? We focused on functional group interactions between macrophytes and sessile invertebrates and their consumers (grazers, predators), how these varied across spatial scales, and with ocean-driven conditions (upwelling, temperature) and ecological subsidies (nutrients, phytoplankton, sessile invertebrate recruits). Experiments were conducted at 13 sites divided across four capes in Oregon and northern California. Results showed that biotic interactions were variable in space and time but overall, sessile invertebrates had no effect on macrophytes while macrophytes had weakly negative effects on sessile invertebrates. Consumers, particularly predators, also had weakly negative effects on both functional groups. Overall, we found that 40-49% of the variance in community structure at the local scale was explained by external factors (e.g., spatial scale, time, upwelling, temperature, ecological subsidies) vs. 19-39% explained by functional group interactions. When individual functional group interaction strengths were used, only 2-3% of the variation was explained by any one functional group while 28-54% of the variation was explained by external factors. We conclude that community structure in the low intertidal zone is driven primarily by external factors at the regional scale with local biotic interactions playing a secondary role.
Collapse
Affiliation(s)
- Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Karina J Nielsen
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, California, 94920, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Tarik C Gouhier
- Marine Science Institute, Northeastern University, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
6
|
Lamb RW, Smith F, Aued AW, Salinas-de-León P, Suarez J, Gomez-Chiarri M, Smolowitz R, Giray C, Witman JD. El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fishes. Sci Rep 2018; 8:16602. [PMID: 30413801 PMCID: PMC6226461 DOI: 10.1038/s41598-018-34929-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/29/2018] [Indexed: 01/31/2023] Open
Abstract
Climate change increases local climatic variation and unpredictability, which can alter ecological interactions and trigger wildlife disease outbreaks. Here we describe an unprecedented multi-species outbreak of wild fish disease driven by a climate perturbation. The 2015–16 El Niño generated a +2.5 °C sea surface temperature anomaly in the Galapagos Islands lasting six months. This coincided with a novel ulcerative skin disease affecting 18 teleost species from 13 different families. Disease signs included scale loss and hemorrhagic ulcerated patches of skin, fin deterioration, lethargy, and erratic behavior. A bacterial culture isolated from skin lesions of two of the affected fish species was identified by sequencing of the 16S rRNA gene as a Rahnella spp. Disease prevalence rates were linearly correlated with density in three fish species. In January 2016, disease prevalence reached 51.1% in the ring-tailed damselfish Stegastes beebei (n = 570) and 18.7% in the king angelfish Holacanthus passer (n = 318), corresponding to 78% and 86% decreases in their populations relative to a 4.5-year baseline, respectively. We hypothesize that this outbreak was precipitated by the persistent warm temperatures and lack of planktonic productivity that characterize extreme El Niño events, which are predicted to increase in frequency with global warming.
Collapse
Affiliation(s)
- Robert W Lamb
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA.
| | - Franz Smith
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA
| | - Anaide W Aued
- Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Florianopolis, Brazil
| | - Pelayo Salinas-de-León
- Department of Marine Sciences, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos Islands, Ecuador.,Pristine Seas, National Geographic Society, Washington, D.C., USA
| | | | | | | | - Cem Giray
- Kennebec River Biosciences, Richmond, ME, USA
| | - Jon D Witman
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI, 02912, USA
| |
Collapse
|
7
|
Aguilera MA, Dobringer J, Petit IJ. Heterogeneity of ecological patterns, processes, and funding of marine manipulative field experiments conducted in Southeastern Pacific coastal ecosystems. Ecol Evol 2018; 8:8627-8638. [PMID: 30250729 PMCID: PMC6145005 DOI: 10.1002/ece3.4371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/03/2018] [Accepted: 06/20/2018] [Indexed: 11/07/2022] Open
Abstract
Ecological manipulative experiments conducted in marine coastal ecosystems have substantially improved ecological theory during the last decades and have provided useful knowledge for the management and conservation of coastal ecosystems. Although different studies report global trends in ecological patterns worldwide, Southeastern Pacific coastal ecosystems have been poorly considered. Given that the SE Pacific coast encompasses diverse coastal ecosystems, consideration of studies conducted along this range can shed light on the heterogeneity of processes regulating coastal communities. We reviewed the biotic interactions and habitat type considered, as well as the complexity in terms of spatial and temporal extent of manipulative field experimental studies conducted along the SE Pacific coast from 0°S to 56°S (Ecuador to Chile). We test the effect of funding reported by different studies as a main factor limiting experimental complexity. From field ecological studies published from 1970 to 2016, we found that 81 studies were truly manipulative, in which one or multiple factors were "manipulated." Around 77% of these studies were located between 21°S and 40°S, and conducted in intertidal rocky habitats. An increase in experimental studies was observed between 2010 and 2015, especially focused on herbivore-alga interactions, although we found that both the temporal extent and spatial extent of these studies have shown a decrease in recent decades. Funding grant amount reported had a positive effect on elapsed time of field experiments, but no effect was observed on spatial extent or in the biotic interactions considered. Elapsed time of experiments was different among the main biotic interactions considered, that is, herbivory, predation, and competition. We suggest that to further progress in applied ecological knowledge, it will be necessary to consider pollution and urbanization processes explicitly using a field experimental framework. This information could improve our understanding of how ecosystems present along the SE Pacific coast respond to climate change and increased levels of human interventions.
Collapse
Affiliation(s)
- Moisés A. Aguilera
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Johanne Dobringer
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Programa Doctorado en Biología y Ecología Aplicada (BEA)Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad Católica del NorteUniversidad de La SerenaCoquimboChile
| | - Ignacio J. Petit
- Departamento de Biología MarinaFacultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Programa Doctorado en Biología y Ecología Aplicada (BEA)Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad Católica del NorteUniversidad de La SerenaCoquimboChile
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI)CoquimboChile
| |
Collapse
|
8
|
Morello SL, Etter RJ. Transition probabilities help identify putative drivers of community change in complex systems. Ecology 2018; 99:1357-1369. [PMID: 29604059 DOI: 10.1002/ecy.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/15/2018] [Indexed: 11/08/2022]
Abstract
Understanding the role of larger-scale processes in modulating the assembly, structure, and dynamics of communities is critical for forecasting the effects of climate-change and managing ecosystems. Developing this comprehensive perspective is difficult though, because species interactions are complex, interdependent, and dynamic through space and time. Typically, experiments focus on tractable subsets of interactions that will be most critical to investigate and explain shifts in communities, but qualitatively base these choices on experience, natural history, and theory. One quantitative approach to identify the putative forces regulating communities, without reducing system complexity, is estimating transition probabilities among species occupying space (i.e., multispecies Markov chain models). Although not mechanistic, these models estimate the relative frequency and importance of ecological pathways in community assembly and dynamics, and can serve as a framework to identify how pathways change across large scales and which are most important to investigate further. Here, we demonstrate this method in the Gulf of Maine (GOM) intertidal zone, where research has largely focused on the local-scale processes that influence communities, while the mechanisms responsible for more regional shifts in communities are less clear. Transition probabilities of faunal elements were quantified bimonthly for ~2.5 yr in local intertidal communities at three replicate sites in the southern, mid-coast, and northern GOM. Transitions related to mortality, colonization, and replacement by mussels, barnacles, red algae, and encrusting corallines differed regionally, suggesting specific pathways related to consumer pressure and recruitment vary across the GOM with shifting intertidal community structure. Combined with species abundance data and insights from previous research, we develop and evaluate the pathways by which communities likely change in the GOM. Species interactions in local communities can be complex, and this complexity should be incorporated into hypothesis building, experiments, theory, interpretations, and forecasts in ecology. Such a comprehensive approach will be critical to understand how regional shifts in local interactions can drive large-scale community change.
Collapse
Affiliation(s)
- Scott L Morello
- Department of Biology, University of Massachusetts, Boston, Massachusetts, 02125, USA.,The Downeast Institute, P.O. Box 83, Bzeals, Maine, 04611, USA
| | - Ron J Etter
- Department of Biology, University of Massachusetts, Boston, Massachusetts, 02125, USA
| |
Collapse
|
9
|
Morris L, Petch D, May D, Steele WK. Monitoring for a specific management objective: protection of shorebird foraging habitat adjacent to a waste water treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:208. [PMID: 28386868 DOI: 10.1007/s10661-017-5924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.
Collapse
Affiliation(s)
- Liz Morris
- Centre for Aquatic Pollution Identification and Management, School of Biosciences Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - David Petch
- GHD Pty Ltd, 43-45 Brougham Street, Geelong, VIC, 3220, Australia
| | - David May
- GHD Pty Ltd, 43-45 Brougham Street, Geelong, VIC, 3220, Australia
| | | |
Collapse
|
10
|
Witman JD, Smith F, Novak M. Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior. PLoS One 2017; 12:e0175705. [PMID: 28430794 PMCID: PMC5400256 DOI: 10.1371/journal.pone.0175705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
In diverse tropical webs, trophic cascades are presumed to be rare, as species interactions may dampen top-down control and reduce their prevalence. To test this hypothesis, we used an open experimental design in the Galápagos rocky subtidal that enabled a diverse guild of fish species, in the presence of each other and top predators (sea lions and sharks), to attack two species of sea urchins grazing on benthic algae. Time-lapse photography of experiments on natural and experimental substrates revealed strong species identity effects: only two predator species–blunthead triggerfish (Pseudobalistes naufragium) and finescale triggerfish (Balistes polylepis)–drove a diurnal trophic cascade extending to algae, and they preferred large pencil urchins (Eucidaris galapagensis) over green urchins (Lytechinus semituberculatus). Triggerfish predation effects were strong, causing a 24-fold reduction of pencil urchin densities during the initial 21 hours of a trophic cascade experiment. A trophic cascade was demonstrated for pencil urchins, but not for green urchins, by significantly higher percent cover of urchin-grazed algae in cages that excluded predatory fish than in predator access (fence) treatments. Pencil urchins were more abundant at night when triggerfish were absent, suggesting that this species persists by exploiting a nocturnal predation refuge. Time-series of pencil urchin survivorship further demonstrated per capita interference effects of hogfish and top predators. These interference effects respectively weakened and extended the trophic cascade to a fourth trophic level through behavioral modifications of the triggerfish-urchin interaction. We conclude that interference behaviors capable of modifying interaction strength warrant greater attention as mechanisms for altering top-down control, particularly in speciose food webs.
Collapse
Affiliation(s)
- Jon D. Witman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
- * E-mail:
| | - Franz Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|