1
|
Soininen EM, Neby M. Small rodent population cycles and plants - after 70 years, where do we go? Biol Rev Camb Philos Soc 2024; 99:265-294. [PMID: 37827522 DOI: 10.1111/brv.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.
Collapse
Affiliation(s)
- Eeva M Soininen
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway
| |
Collapse
|
2
|
Sørås R, Fjelldal MA, Bech C, van der Kooij J, Skåra KH, Eldegard K, Stawski C. State dependence of arousal from torpor in brown long-eared bats (Plecotus auritus). J Comp Physiol B 2022; 192:815-827. [PMID: 35972527 PMCID: PMC9550697 DOI: 10.1007/s00360-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
To cope with periods of low food availability and unsuitable environmental conditions (e.g., short photoperiod or challenging weather), many heterothermic mammals can readily go into torpor to save energy. However, torpor also entails several potential costs, and quantitative energetics can, therefore, be influenced by the individual state, such as available energy reserves. We studied the thermal energetics of brown long-eared bats (Plecotus auritus) in the northern part of its distributional range, including torpor entry, thermoregulatory ability during torpor and how they responded metabolically to an increasing ambient temperature (Ta) during arousal from torpor. Torpor entry occurred later in bats with higher body mass (Mb). During torpor, only 10 out of 21 bats increased oxygen consumption (V̇O2) to a greater extent above the mean torpor metabolic rates (TMR) when exposed to low Ta. The slope of the torpid thermoregulatory curve was shallower than that of resting metabolic rate (RMR) during normothermic conditions, indicating a higher thermal insulation during torpor. During exposure to an increasing Ta, all bats increased metabolic rate exponentially, but the bats with higher Mb aroused at a lower Ta than those with lower Mb. In bats with low Mb, arousal was postponed to an Ta above the lower critical temperature of the thermoneutral zone. Our results demonstrate that physiological traits, which are often considered fixed, can be more flexible than previously assumed and vary with individual state. Thus, future studies of thermal physiology should to a greater extent take individual state-dependent effects into account.
Collapse
Affiliation(s)
- Rune Sørås
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway.
| | - Mari Aas Fjelldal
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
| | - Jeroen van der Kooij
- Nature Education, Research and Consultancy van der Kooij, Rudsteinveien 67, 1480, Slattum, NO, Norway
| | - Karoline H Skåra
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. Box 222, Oslo, 0213, NO, Norway
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, 1433, Ås, NO, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, NO, Norway
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
3
|
Hjeljord O, Loe LE. The roles of climate and alternative prey in explaining 142 years of declining willow ptarmigan hunting yield. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olav Hjeljord
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences Aas Norway
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences Aas Norway
| |
Collapse
|
4
|
Wereszczuk A, Hofmeester TR, Csanády A, Dumić T, Elmeros M, Lanszki J, Madsen AB, Müskens G, Papakosta MA, Popiołek M, Santos-Reis M, Zuberogoitia I, Zalewski A. Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition. Sci Rep 2021; 11:24164. [PMID: 34921185 PMCID: PMC8683469 DOI: 10.1038/s41598-021-03531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Many species show spatial variation in body size, often associated with climatic patterns. Studying species with contrasting geographical patterns related to climate might help elucidate the role of different drivers. We analysed changes in the body mass of two sympatric medium-sized carnivores—pine marten (Martes martes) and stone marten (Martes foina)—across Europe over 59 years. The body mass of pine marten increased with decreasing latitude, whereas stone marten body mass varied in a more complex pattern across its geographic range. Over time, the average body mass of pine martens increased by 255 g (24%), while stone marten by 86 g (6%). The greatest increase of body mass along both martens’ geographic range was observed in central and southern Europe, where both species occur in sympatry. The body mass increase slowed down over time, especially in allopatric regions. The average pine/stone marten body mass ratio increased from 0.87 in 1960 to 0.99 in 2019, potentially strengthening the competition between them. Thus, a differential response in body size to several drivers over time might have led to an adaptive advantage for pine martens. This highlights the importance of considering different responses among interacting species when studying animal adaptation to climate change.
Collapse
Affiliation(s)
- Anna Wereszczuk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.
| | - Tim R Hofmeester
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Alexander Csanády
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakia
| | - Tomislav Dumić
- Department of Wildlife Management and Nature Conservation, Karlovac University of Applied Sciences, Karlovac, Croatia
| | - Morten Elmeros
- Department of Bioscience, Kalø, Aarhus University, Roende, Denmark
| | - József Lanszki
- Carnivore Ecology Research Group, Szent István University, Kaposvár, Hungary
| | - Aksel B Madsen
- Department of Bioscience, Kalø, Aarhus University, Roende, Denmark
| | - Gerard Müskens
- Animal Ecology Team, Environmental Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Malamati A Papakosta
- Lab of Wildlife & Freshwater Fisheries, Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece
| | - Marcin Popiołek
- Department of Parasitology, University of Wrocław, Wrocław, Poland
| | - Margarida Santos-Reis
- Faculdade de Ciências, Centre for Ecology, Evolution and Environmental Changes (cE3c), Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
5
|
Мyakushko SA. The phenomenon of the shrinking size of bank vole (Myodes glareolus) in an anthropogenic environment (experience of 50 years of observations). BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fifty years of continuous monitoring of the bank vole population (Myodes glareolus Schreber, 1780) revealed the phenomenon of shrinking body size of individuals, manifesting in significant reduction in their regular size and mass parameters. Field observations were carried out in the Kaniv Nature Reserve (Cherkasy region, Ukraine) during the first half of summer every year. In the forest biotopes of the reserve, this species is dominant in the group of rodents. The research period covered various stages of the existence of the protected ecosystem. Its small area, location ina densely populated region of Ukraine and interaction with neighboring territories which are involved in economic activities have always caused anthropogenic pressure on the protected area. Its nature and intensity determined the changes in the protection regime and the loss of reserve status in 1951–1968. Later, the territory of the reserve experienced increasing technogenic pressure accompanied by radioactive contamination. In this work, to compare their characteristics, four complete cycles of the density dynamics of the bank vole population (from depression to depression) were selected, the duration of which was 4–5 years. The first three cycles correspond to qualitatively different periods in the existence of the ecosystem and the population of the studied species, and the last one corresponds to the relatively current situation. Over the recent 30 years, the size and mass parameters of individuals of bank voles have deсreased, - this phenomenon was called shrinking. The process was also observed to tend towards consistent increase in scale. Differentiated analysis shows that in different sex and functional groups of animals, the decrease in exterior parameters can reach 30.3%. Shrinking is especially notable in the group of adult females that are actively involved in reproduction (compared to the second cycle, considered as the control, the decrease in parameters among these is 33.2%). Juveniles of this sex lost 31.8% of their fatness. Besides, in the population of voles, the proportion of large-size individuals was significantly reduced. The group of animals that overwintered significantly reduced its representation, and its existing representatives had much smaller exterior parameters. The studies found that the shrinking process is stable over time, which does not allow it to be considered a random phenomenon or an artifact of research. This phenomenon has no correlation with the amount or availability of food. It occurs against the background of numerous changes in various aspects of population dynamics, which gives grounds to associate it with anthropogenic changes in the environment. Shrinking is believed to be realized through various mechanisms. Firstly, as a result of mortality, the largest individuals and reproducing females with the greatest energy needs disappear from the population, and secondly, the growth and weight gain of young animals is slower. As a result, decrease in the size and mass parameters of individuals reduces their specific energy needs and allows the population to bring their requirements in correspondance with the capability of the environment to support a certain number of resource consumers. An analogy was drawn with the Dehnel’s phenomenon, described for shrews of the Sorex genus, whose body size and weight decrease is an element of preparation for experiencing adverse winter conditions. Based on similar concepts, the shrinking of its elements can be considered as a specific population strategy to maintain the ecological balance.
Collapse
|
6
|
The Status of Prunus padus L. (Bird Cherry) in Forest Communities throughout Europe and Asia. FORESTS 2020. [DOI: 10.3390/f11050497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prunus padus L. (bird cherry) belongs to the Racemosa group in subgenus Padus in the genus Prunus L. It is a hardy invasive species, which makes it valuable for securing slopes, and for eco-design. It is a good solitary park tree with early flowering of white flowers in racemes, which have a pleasant smell. However, it may be attacked by cherry-oat aphid, and the small ermine moth, which may weave giant webs over the whole tree, which demonstrates the important role of P. padus in the food web of forest ecosystems. The species is in balance with these pests, other herbivores and diseases throughout Europe and Asia. Another threat is the competition against the invasive P. serotina, but it seems that P. padus is not strongly threatened, though they compete for the same habitats. Moreover, human interference of forest community ecology is probably the greatest threat. The tree is not only winter hardy; it can also survive hot summers and tolerate a wide variety of soil types. It may form dense thickets due to the regeneration of branches bent to the ground and basal shoots, and may be invasive. These characteristics are important in determining the ecological niche of P. padus, which involves the position of the species within an ecosystem, comprising both its habitat requirements and the functional role. It is also important that P. padus has effective dispersal of pollen and seeds. This, together with the previously noted characteristics and the fact that the tree can cope well with climate change, define it as a not threatened species. However, the ssp. borealis is threatened and national level monitoring is required. Prunus padus has been exploited by farmers and rural population, but is less used today. However, it is still used for making syrup, jam and liquor. Moreover, the wood is valuable for wood carving and making cabinets. All tissues are valuable as sources of powerful natural antioxidants. However, the interest in the P. padus fruit and other tissues is overshadowed by the interest in other wild species of edible and human health-related berries. Moreover, the tree is used in horticulture as an ornamental in gardens and parks, values that deserve a new focus.
Collapse
|
7
|
Benevenuto RF, Hegland SJ, Töpper JP, Rydgren K, Moe SR, Rodriguez‐Saona C, Seldal T. Multiannual effects of induced plant defenses: Are defended plants good or bad neighbors? Ecol Evol 2018; 8:8940-8950. [PMID: 30271557 PMCID: PMC6157685 DOI: 10.1002/ece3.4365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/30/2018] [Accepted: 06/17/2018] [Indexed: 11/08/2022] Open
Abstract
Defenses induced by herbivore feeding or phytohormones such as methyl jasmonate (MeJA) can affect growth, reproduction, and herbivory, not only on the affected individual but also in its neighboring plants. Here, we report multiannual defense, growth, and reproductive responses of MeJA-treated bilberry (Vaccinium myrtillus) and neighboring ramets. In a boreal forest in western Norway, we treated bilberry ramets with MeJA and water (control) and measured responses over three consecutive years. We observed the treatment effects on variables associated with herbivory, growth, and reproduction in the MeJA-treated and untreated ramet and neighboring ramets distanced from 10 to 500 cm. MeJA-treated ramets had fewer grazed leaves and browsed shoots compared to control, with higher effects in 2014 and 2015, respectively. In 2013, growth of control ramets was greater than MeJA-treated ramets. However, MeJA-treated ramets had more flowers and berries than control ramets 2 years after the treatment. The level of insect and mammalian herbivory was also lower in untreated neighboring ramets distanced 10-150 cm and, consistent with responses of MeJA-treated ramets, the stronger effect was also one and 2 years delayed, respectively. The same neighboring ramets had fewer flowers and berries than untreated ramets, indicating a trade-off between defense and reproduction. Although plant-plant effects were observed across all years, the strength varied by the distance between the MeJA-treated ramets and its untreated neighbors. We document that induced defense in bilberry reduces both insect and mammalian herbivory, as well as growth, over multiple seasons. The defense responses occurred in a delayed manner with strongest effects one and 2 years after the induction. Additionally, our results indicate defense signaling between MeJA-treated ramets and untreated neighbors. In summary, this study shows that induced defenses are important ecological strategies not only for the induced individual plant but also for neighboring plants across multiple years in boreal forests.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Stein Joar Hegland
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| | | | - Knut Rydgren
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| | - Stein R. Moe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | - Tarald Seldal
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| |
Collapse
|
8
|
Moe SR, Gjørvad IR, Eldegard K, Hegland SJ. Ungulate browsing affects subsequent insect feeding on a shared food plant, bilberry (Vaccinium myrtillus). Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zwolak R, Witczuk J, Bogdziewicz M, Rychlik L, Pagacz S. Simultaneous population fluctuations of rodents in montane forests and alpine meadows suggest indirect effects of tree masting. J Mammal 2018. [DOI: 10.1093/jmammal/gyy034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska, Poznań, Poland
| | - Julia Witczuk
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza, Warszawa, Poland
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska, Poznań, Poland
- CREAF, Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Valles, Catalonia, Spain
| | - Leszek Rychlik
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska, Poznań, Poland
| | - Stanisław Pagacz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza, Warszawa, Poland
| |
Collapse
|
10
|
Boulanger-Lapointe N, Järvinen A, Partanen R, Herrmann TM. Climate and herbivore influence onVaccinium myrtillusover the last 40 years in northwest Lapland, Finland. Ecosphere 2017. [DOI: 10.1002/ecs2.1654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Antero Järvinen
- Kilpisjärvi Biological Station; University of Helsinki; Käsivarrentie 14622 99490 Kilpisjärvi Finland
| | - Rauni Partanen
- Kilpisjärvi Biological Station; University of Helsinki; Käsivarrentie 14622 99490 Kilpisjärvi Finland
| | - Thora Martina Herrmann
- Département de Géographie; Université de Montréal; C.P. 6128 Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| |
Collapse
|
11
|
Hegland SJ, Seldal T, Lilleeng MS, Rydgren K. Can browsing by deer in winter induce defence responses in bilberry (Vaccinium myrtillus)? Ecol Res 2016. [DOI: 10.1007/s11284-016-1351-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|