Minowa E, Hayashi Y, Goh K, Ishida N, Kurashige Y, Nezu A, Saitoh M, Tanimura A. Enhancement of receptor-mediated calcium responses by phenytoin through the suppression of calcium excretion in human gingival fibroblasts.
J Periodontal Res 2023;
58:274-282. [PMID:
36597969 DOI:
10.1111/jre.13089]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/19/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES
Gingival overgrowth caused by phenytoin is proposed to be associated with Ca2+ signaling; however, the mechanisms that increase the intracellular Ca2+ concentration ([Ca2+ ]i ) are controversial. The current study aimed to elucidate the mechanism underlying the phenytoin-induced increase in [Ca2+ ]i in human gingival fibroblasts (HGFs).
METHODS
Effects of 100 μM phenytoin on [Ca2+ ]i in HGFs were examined at the single-cell level using fluorescence images of fura-2 captured by an imaging system consisting of an EM-CCD camera coupled to an inverted fluorescence microscope at room temperature.
RESULTS
Exposure of HGFs to 100 μM phenytoin induced a transient increase in [Ca2+ ]i in the absence of extracellular Ca2+ , indicating that the phenytoin-induced increase in [Ca2+ ]i does not require an influx of extracellular Ca2+ . In addition, phenytoin increased [Ca2+ ]i in HGFs depleted of intracellular Ca2+ stores by thapsigargin, indicating that neither Ca2+ release from stores nor inhibition of Ca2+ uptake is involved. Furthermore, the phenytoin-induced [Ca2+ ]i elevation was reduced to 18.8% in the absence of extracellular Na+ , and [Ca2+ ]i elevation upon removal of extracellular Na+ was reduced to 25.9% in the presence of phenytoin. These results imply that phenytoin increases [Ca2+ ]i of HGFs by suppressing the Na+ /Ca2+ exchanger. Suppression of intracellular Ca2+ excretion is thought to enhance the Ca2+ responses induced by various stimuli. Analysis at the single-cell level showed that stimulation with 1 μM ATP or 3 μM histamine increased [Ca2+ ]i in 20-50% of cells, and [Ca2+ ]i increased in many unresponsive cells in the presence of phenytoin.
CONCLUSION
Our findings demonstrate that phenytoin induced increase in [Ca2+ ]i by the inhibition of Ca2+ efflux in HGFs. It was also found that phenytoin strongly enhanced small Ca2+ responses induced by stimulation with a low concentration of ATP or histamine by inhibiting Ca2+ efflux. These findings suggest a possibility that phenytoin causes drug-induced gingival overgrowth by interacting with inflammatory bioactive substances in the gingiva.
Collapse