1
|
Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, Cheng Y, Wang B, Yang Y, Zhao H. FPR1: A critical gatekeeper of the heart and brain. Pharmacol Res 2024; 202:107125. [PMID: 38438091 DOI: 10.1016/j.phrs.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.
Collapse
Affiliation(s)
- Ziyin Zhangsun
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Institute of Neuroscience, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Baoying Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
2
|
Dhaffouli F, Hachicha H, Abida O, Gharbi N, Elloumi N, Kanoun H, Belguith N, Marzouk S, Fakhfakh R, Sawsen F, Mnif H, Kamoun H, Bahloul Z, Masmoudi H. Annexin A1 and its receptor gene polymorphisms in systemic lupus erythematosus in the Tunisian population. Clin Rheumatol 2022; 41:1359-1369. [PMID: 35028743 DOI: 10.1007/s10067-022-06057-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND An association between ANXA1, FPR1 and FPR2 gene polymorphisms and the patho-physiology of many human diseases was suggested by numerous studies. OBJECTIVE Our study aimed to evaluate association between common polymorphisms in the 9q21.13 and 19q13.41 and susceptibility to systemic lupus erythematosus (SLE) in the Tunisian population. MATERIALS We performed a case-control study on 107 Tunisian SLE patients and 122 healthy controls to explore 9 polymorphisms of the three studied genes: rs2811226 and rs3739959 (ANXA1), rs5030880, rs1042229, rs1461765570, rs17849971, rs867228 (FPR1), rs17694990 and rs11666254 (FPR2). RESULTS Four polymorphisms were found to be linked with SLE susceptibility: rs3739959-ANXA1 > G and GG (p = 0.021, OR = 1.73 and p = 0.014, OR = 2.06 respectively), rs867228-FPR1 > TT (p = 0.014, OR = 4.59), rs11666254-FPR2 > GG (p = 0.019, OR = 8.34) and rs17694990-FPR2 > T (p = 0.05, OR = 1.506). In homogenous groups of SLE patients depending on clinical manifestations and serological results, previous associations were confirmed with a panoply of manifestations of lupus including lupus nephritis, malar rash, mouth ulceration and hypocomplementia. CONCLUSION Our study showed an association between ANXA1 > rs3739959, FPR1 > rs867228, FPR2 > rs11666254, FPR2 > rs17694990 and SLE susceptibility. Our results also showed a strong association between the two ANXA1 studied SNPs and LN which allowed us to suggest these two SNPs as biomarkers of LN development in SLE. Further research is needed to understand by which mechanism the gene variants affect susceptibility to SLE. Key Points • Lupus erythematosus is an autoimmune disease in which a panoply of factors are implicated • Annexin A1 interaction with its receptors are suggested as a target in therapy of a panoply of human disease in particular cancers • The present results highlighted the implication of Annexin A1 and its receptors gene polymorphisms in the physiopathology of lupus, in particular in the involvement of renal and cutaneous lesions.
Collapse
Affiliation(s)
- Fatma Dhaffouli
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.
| | - Hend Hachicha
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.,Department of Immunology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Nourhene Gharbi
- Research Laboratory of Human Molecular Genetics, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Nesrine Elloumi
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Houda Kanoun
- Research Laboratory of Human Molecular Genetics, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Neila Belguith
- Research Laboratory of Human Molecular Genetics, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia.,Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Sameh Marzouk
- Department of Internal Medicine, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Feki Sawsen
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.,Department of Immunology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Hela Mnif
- The Regional Blood Transfusion Center of Sfax, Sfax, Tunisia
| | - Hassen Kamoun
- Research Laboratory of Human Molecular Genetics, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Zouhir Bahloul
- Department of Internal Medicine, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hatem Masmoudi
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.,Department of Immunology, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Turkmen M, Firatli E. The study of genetic predisposition on periodontitis and peri-implantitis. Niger J Clin Pract 2022; 25:1799-1804. [DOI: 10.4103/njcp.njcp_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Payne JAE, Tailhades J, Ellett F, Kostoulias X, Fulcher AJ, Fu T, Leung R, Louch S, Tran A, Weber SA, Schittenhelm RB, Lieschke GJ, Qin CH, Irima D, Peleg AY, Cryle MJ. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat Commun 2021; 12:6157. [PMID: 34697316 PMCID: PMC8546149 DOI: 10.1038/s41467-021-26244-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
The pathogen Staphylococcus aureus can readily develop antibiotic resistance and evade the human immune system, which is associated with reduced levels of neutrophil recruitment. Here, we present a class of antibacterial peptides with potential to act both as antibiotics and as neutrophil chemoattractants. The compounds, which we term 'antibiotic-chemoattractants', consist of a formylated peptide (known to act as chemoattractant for neutrophil recruitment) that is covalently linked to the antibiotic vancomycin (known to bind to the bacterial cell wall). We use a combination of in vitro assays, cellular assays, infection-on-a-chip and in vivo mouse models to show that the compounds improve the recruitment, engulfment and killing of S. aureus by neutrophils. Furthermore, optimizing the formyl peptide sequence can enhance neutrophil activity through differential activation of formyl peptide receptors. Thus, we propose antibiotic-chemoattractants as an alternate approach for antibiotic development.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| | - Julien Tailhades
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xenia Kostoulias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Ryan Leung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephanie Louch
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Amy Tran
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Severin A Weber
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Chengxue Helena Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Daniel Irima
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Max J Cryle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Abstract
Periodontal microbiology has historically been based on an "us against them" paradigm, one that focuses mainly on identifying microbes and viruses that cause disease. However, such a bottom-up approach limits our appreciation of the incredible diversity of this ecosystem and the essential ways in which microbial interactions contribute to health and homeostasis of the subgingival niche. Microbiomics-the science of collectively characterizing and quantifying molecules responsible for the structure, function, and dynamics of a microbial community-has enabled us to study these communities in their natural habitat, thereby revolutionizing our knowledge of host-associated microbes and reconceptualizing our definition of "human." When this systems-biology approach is combined with ecologic principles, it explicates the complex relationship that exist between microbiota and between them and us, the human. In this volume of Periodontology 2000, a group of 12 female scientists take the lead in investigating how metagenomics, genomics, metatranscriptomics, proteomics, metaproteomics, and metabolomics have achieved the following: (a) widened our view of the periodontal microbiome; (b) expanded our understanding of the evolution of the human oral microbiome; (c) shone a light on not just bacteria, but also other prokaryotic and eukaryotic members of the community; (d) elucidated the effects of anthropogenic behavior and systemic diseases on shaping these communities; and (e) influenced traditional patterns of periodontal therapeutics.
Collapse
Affiliation(s)
- Purnima S Kumar
- Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Shaddox LM, Morford LA, Nibali L. Periodontal health and disease: The contribution of genetics. Periodontol 2000 2020; 85:161-181. [PMID: 33226705 DOI: 10.1111/prd.12357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Periodontitis is an infectious, inflammatory disease that is associated with a complex interplay between specific bacteria, host response, and environmental factors. Because of its high degree of familial aggregation, specifically for the more aggressive forms of the disease, genetics factors have been implicated in disease pathogenesis for several decades. This review provides an overview of what we currently know regarding the genetic and epigenetic contributions to periodontal disease and discusses future opportunities in the field.
Collapse
Affiliation(s)
- Luciana Macchion Shaddox
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - Lorri Ann Morford
- Division of Orthodontics, Department of Oral Health Sciences, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - Luigi Nibali
- Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, Guy's Hospital, London, UK
| |
Collapse
|
7
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
8
|
Li SQ, Yu Y, Zhang Y, Sun YP, Li XX, Su N. The Role of Formyl Peptide Receptor 1 Gene Polymorphisms in Human Colorectal Cancer. J Cancer 2020; 11:3580-3587. [PMID: 32284754 PMCID: PMC7150440 DOI: 10.7150/jca.36355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/01/2020] [Indexed: 12/20/2022] Open
Abstract
Formyl peptide receptor 1 (FPR1) belongs to G protein-coupled receptors expressed mainly in phagocytic leukocytes. The gene encoding FPR1 is highly polymorphic and related to inflammation. In this study, we investigated the single nucleotide polymorphisms (SNPs) of Fpr1 in human colorectal cancer (CRC), and analyzed the association of Fpr1 SNPs with clinicopathological parameters and some specific diagnostic markers of CRC. Although the allele and genotype frequencies of Fpr1 SNPs in CRC tissues were not significantly different from that in whole blood cells derived from healthy Chinese subjects. Significant associations were observed between genotypes of c.289C>A and distant metastasis (P=0.001), and between genotypes of c.306T>C and tumor size (P=0.016). Genotypes of c.546C>A was closer to tumor size and lymphatic invasion (P=0.012 and P=0.043, respectively). Meanwhile, genotypes of c.1037C>A was related with tumor location and differentiation (P=0.000 and P=0.005, respectively). Besides, genotypes of c.576T>C>G was related with pathological type (P=0.000). Furthermore, several Fpr1 SNP positions including c.289 (C>A) and c.576 (G>C>T) were related to the expression of P53 (P=0.004 and P=0.008, respectively), and similar results were observed between other Fpr1 SNP positions and CEA, HER2 and Ki-67 (P<0.05). Our data demonstrate that Fpr1 SNPs may play the important role in the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Shu-Qin Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road (No.2), Shanghai, 200025, China
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan-Ping Sun
- Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xin-Xing Li
- Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Ning Su
- Department of General Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
9
|
Rusyanti Y, Widyaputra S, Maskoen AM. Periodontal tissue destruction in aggressive periodontitis: Determination of gene or environmental factors. Saudi Dent J 2019; 31:290-299. [PMID: 30983842 PMCID: PMC6445446 DOI: 10.1016/j.sdentj.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 11/09/2022] Open
Abstract
Aim This study observed the role of defective neutrophil function in aggressive periodontitis through FPR1 gene polymorphism and the level of Il-8 compared with the role of dental plaque presence towards periodontal tissue damage (Clinical Attachment Loss/CAL) in patients in Indonesia. Methods Case-control study was used to detect differences in polymorphism expression of FPR1 gene, the level of Il-8, dental plaque, and Clinical Attachment Loss/CAL from 32 Aggressive Periodontitis (AP) and 29 Non-Aggressive Periodontitis (NAP) samples, selected with consecutive sampling method. Polymorphism was identified using polymerase chain reaction (PCR) technique, and the level of IL-8 in the gingival crevicular fluid was identified using the enzyme-linked immunosorbent assay (ELISA) test. The Clinical Attachment Loss was analysed by using William periodontal probe, and the oral environment analysis was performed by using the OHI-S plaque index. Statistical analysis was used to determine the significance of the polymorphism difference of FPR gene, Il-8, Plaque and CAL amongst all subjects and also the control and correlations among these factors. Results The results showed that in the Aggressive Periodontitis (AP), the presence of the polymorphism of c576 T > C > G of FPR1 gene caused as much as 5.04 times higher occurrence of aggressive periodontitis (p = 0.006; OR = 5.040 (1.51–16.74)). The low level of Il-8 (below 0.064 pg/μl), showed as much as 34.5 times higher occurrence of aggressive periodontitis (OR = 34.5 (6.76–176.08)). The oral hygiene of the AP samples were better significantly (p = 0.002), and on the Clinical Attachment Loss (CAL) sample was even more (p = 0.02). The polymorphism of c301 G > C of FPR1 gene correlated with the CAL (r = 0.37; p = 0.039). The polymorphism of c576 T > C > G correlated significantly with the Il-8 (r = 0.5; p = 0.0287). The polymorphism of c348 T > C correlated significantly with the dental plaque (r = 0.355; p = 0.049), whereas the dental plaque correlation with CAL was not significant. Conclusion The research conclusion showed that in aggressive periodontitis, genetic and environmental factors were correlated with the cause of periodontal tissue injury, and the role of genetic factors was more prominent on the injury.
Collapse
Affiliation(s)
- Yanti Rusyanti
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Indonesia
| | - Sunardhi Widyaputra
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Indonesia
| | - Ani Melani Maskoen
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Indonesia
| |
Collapse
|
10
|
Bakhtiar S, Shadur B, Stepensky P. The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT. Front Pediatr 2019; 7:436. [PMID: 31709206 PMCID: PMC6821686 DOI: 10.3389/fped.2019.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel.,Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Graduate Research School, University of New South Wales, Kensington, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Gonçalves PF, Harris TH, Elmariah T, Aukhil I, Wallace MR, Shaddox LM. Genetic polymorphisms and periodontal disease in populations of African descent: A review. J Periodontal Res 2017; 53:164-173. [PMID: 29105764 DOI: 10.1111/jre.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2017] [Indexed: 01/22/2023]
Abstract
Aggressive periodontitis is a rare but rapidly progressing form of periodontal disease that usually affects otherwise systemically healthy individuals, at a young age. It usually affects first molars and incisors, which are usually lost if treatment is not properly and early rendered. Although of low prevalence, it affects individuals of African descent at a higher prevalence, and usually multiple members within the same family. Several studies have been performed in the attempt to evaluate specific single nucleotide polymorphisms (SNPs) that could be associated with this disease. To the best of our knowledge, the present article provides the first review of the literature focusing on studies that evaluated SNPs in patients of African descent with aggressive periodontitis. Several SNPs have been evaluated in different genes according to their role in the pathogenesis of the disease, with positive and negative associations (such as IL1, FCGR3B, FPR1, LTF, CYBA, GLT6D1, TLR4) with both the localized and generalized forms of aggressive periodontitis. Given the complexity of periodontitis, the difficulty in gathering large cohorts diagnosed with this rare form of disease, and the fact that candidate gene studies may only determine part of the genetic risk of a disease, the search for specific SNPs associated with aggressive periodontitis seems to be a long one, most likely to result in the combination of multiple SNPs, in multiple genes.
Collapse
Affiliation(s)
- P F Gonçalves
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Dentistry, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - T H Harris
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - T Elmariah
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - I Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - M R Wallace
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - L M Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Skvortsov SS, Gabdoulkhakova AG. Formyl peptide receptor polymorphisms: 27 most possible ways for phagocyte dysfunction. BIOCHEMISTRY (MOSCOW) 2017; 82:426-437. [DOI: 10.1134/s0006297917040034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Tsai YF, Yang SC, Hwang TL. Formyl peptide receptor modulators: a patent review and potential applications for inflammatory diseases (2012-2015). Expert Opin Ther Pat 2016; 26:1139-1156. [PMID: 27454150 DOI: 10.1080/13543776.2016.1216546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The activation of leukocytes and the subsequent immune cascade play an essential role in sterile and infectious inflammation. Dysregulation of these immune responses or excess leukocyte activation can induce tissue damage, organ dysfunction and mortality. Formyl peptide receptors (FPRs) are functionally diverse pattern recognition receptors responsible for recognizing different endogenous damage-associated molecular patterns or exogenous pathogen-associated molecular patterns. FPRs mediate leukocyte activation during inflammation. FPR1 antagonists and FPR2 agonists have demonstrated significant anti-inflammatory effects based on in vitro and in vivo studies. An increasing number of synthesized compounds targeting FPRs, especially potential FPR1 antagonists and FPR2 agonists, have been disclosed in patents. Areas covered: This article summarizes the current pharmacology patents related to FPR family modulators and their therapeutic indications based on a review of patent applications disclosed between 2012 and 2015. Expert opinion: In this review, FPR1 modulators comprise β-1,3-glucan synthase inhibitors containing an FPR ligand moiety, template-fixed peptidomimetics, cyclosporin H, and dipeptide derivatives. FPR2 modulators include phenylurea, bridged spiro[2.4]heptane ester, naphthalene, aminotriazole, polycyclic pyrrolidine-2,5-dione, imidazolidine-2,4-dione, (2-ureidoacetamido)alkyl, amide, oxazolyl-methylether, oxazole, thiazole, and crystalline potassium salt derivatives. These compounds have potential applications for human conditions such as inflammatory lung diseases, ischemia-reperfusion injury, sepsis, inflammatory bowel disease, and wound healing. FPRs are emerging as important targets for treating leukocyte-dominant inflammation.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,b Graduate Institute of Clinical Medical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Shun-Chin Yang
- d Department of Anesthesiology , Taipei Veterans General Hospital and National Yang-Ming University , Taipei , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Tsong-Long Hwang
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,f Chinese Herbal Medicine Research Team, Healthy Aging Research Centre , Chang Gung University , Taoyuan , Taiwan.,g Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology , Chang Gung University of Science and Technology , Taoyuan , Taiwan
| |
Collapse
|
14
|
Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 2016; 114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
15
|
Vacchelli E, Enot DP, Pietrocola F, Zitvogel L, Kroemer G. Impact of Pattern Recognition Receptors on the Prognosis of Breast Cancer Patients Undergoing Adjuvant Chemotherapy. Cancer Res 2016; 76:3122-6. [PMID: 27197163 DOI: 10.1158/0008-5472.can-16-0294] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 11/16/2022]
Abstract
Pattern recognition receptors allow the innate immune system to perceive the presence of microbial products and to launch the first steps of the defense response. Some pattern recognition receptors also sense endogenous ligands that are released from uninfected dying cells, thereby activating immune responses against dead-cell antigens. This applies to toll-like receptors 3 and 4 (TLR3, TLR4), which sense double-stranded RNA and high-mobility group protein B1 (HMGB1), respectively, as well as to formyl peptide receptor-1 (FPR1), which interacts with Annexin A1 (ANXA1) from dead cells. Breast cancer patients who bear loss-of-function alleles in TLR3, TLR4, and FPR1 exhibit a reduced metastasis-free and overall survival after treatment with anthracycline-based adjuvant chemotherapy. These genetic defects are epistatic with respect to each other, suggesting that they act on the same pathway, linking chemotherapy to a therapeutically relevant anticancer immune response. Loss-of-function alleles in TLR4 and FPR1 also affect the prognosis of colorectal cancer patients treated with oxaliplatin-based chemotherapy. Altogether, these results support the idea that conventional anticancer treatments rely on stimulation of anticancer immune responses to become fully efficient. Cancer Res; 76(11); 3122-6. ©2016 AACR.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U1138, Paris, France. Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - David P Enot
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U1138, Paris, France. Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Federico Pietrocola
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U1138, Paris, France. Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Paris, France. Université Pierre et Marie Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France. Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France. INSERM, U1015, Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France. INSERM, U1138, Paris, France. Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. Université Paris Descartes, Sorbonne Paris Cité, Paris, France. Université Pierre et Marie Curie, Paris, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1172-84. [PMID: 25791526 DOI: 10.1016/j.ajpath.2015.01.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/03/2015] [Accepted: 01/13/2015] [Indexed: 01/18/2023]
Abstract
Neutrophil migration to sites of inflammation and the subsequent execution of multiple functions are designed to contain and kill invading pathogens. These highly regulated and orchestrated processes are controlled by interactions between numerous receptors and their cognate ligands. Unraveling and identifying those that are central to inflammatory processes may represent novel therapeutic targets for the treatment of neutrophil-dominant inflammatory disorders in which dysregulated neutrophil recruitment, function, and elimination serve to potentiate rather than resolve an initial inflammatory insult. The first G protein-coupled receptor to be described on human neutrophils, formyl peptide receptor 1 (FPR1), is one such receptor that plays a significant role in the execution of these functions through multiple intracellular signaling pathways. Recent work has highlighted important observations with regard to both receptor function and the importance and functional relevance of FPR1 in the pathogenesis of a range of both sterile and infective inflammatory conditions. In this review, we explore the multiple components of neutrophil migration and function in both health and disease, with a focus on the role of FPR1 in these processes. The current understanding of FPR1 structure, function, and signaling is examined, alongside discussion of the potential importance of FPR1 in inflammatory diseases suggesting that FPR1 is a key regulator of the inflammatory environment.
Collapse
Affiliation(s)
- David A Dorward
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom.
| | - Christopher D Lucas
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Gavin B Chapman
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Haslett
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Liang XY, Chen LJ, Ng TK, Tuo J, Gao JL, Tam POS, Lai TYY, Chan CC, Pang CP. FPR1 interacts with CFH, HTRA1 and smoking in exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Eye (Lond) 2014; 28:1502-10. [PMID: 25277308 PMCID: PMC4268466 DOI: 10.1038/eye.2014.226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/12/2014] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the genetic association of an inflammation-related gene, formyl peptide receptor 1 (FPR1), in exudative age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). METHODS The coding region of FPR1 gene was sequenced in 554 unrelated Chinese individuals: 155 exudative AMD patients, 179 PCV patients, and 220 controls. Interactions and combined effects of FPR1 with complement factor H (CFH), high temperature requirement factor A1 (HTRA1), and smoking were also investigated. RESULTS A total of 28 polymorphisms in FPR1 were identified. Single nucleotide polymorphisms (SNP) rs78488639 increased the risk to exudative AMD (P=0.043) and PCV (P=0.016), whereas SNP rs867229 decreased the risk to exudative AMD (P=0.0026), but not PCV. Homozygous G allele of rs1042229 was associated with exudative AMD (P=0.0394, odds ratio (OR)=2.27, 95% confident interval: 1.08-4.74), but not with PCV. Exudative AMD, but not PCV, was associated with the heterozygous genotypes of rs2070746 (P=0.019, OR=0.57) and rs867229 (P=0.0082, OR=0.54). Significantly, interactions were identified among FPR1 rs78488639, CFH rs800292, and HTRA1 rs11200638 in both exudative AMD and PCV. Combined heterozygous risk alleles of CFH rs800292 GA and FPR1 rs78488639 CA were posed to PCV (P=2.22 × 10(-4), OR=10.47), but not exudative AMD. Furthermore, FPR1 rs78488639 CA combining with HTRA1 rs11200638 and smoking was also predisposed risks to exudative AMD and PCV. CONCLUSION FPR1 is associated with exudative AMD and PCV in a Hong Kong Chinese cohort. FPR1 rs78488639 interacted with CFH rs800292, HTRA1 rs11200638, and smoking, enhancing risk to exudative AMD and PCV.
Collapse
Affiliation(s)
- X Y Liang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - L J Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - T K Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - J Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J-L Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - P O S Tam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - T Y Y Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - C-C Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - C P Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Abstract
Neutrophils (also called polymorphonuclear leukocytes) are the most abundant leukocytes whose primary purpose as anti-microbial professional phagocytes is to kill extracellular pathogens. Neutrophils and macrophages are phagocytic cell types that along with other cells effectively link the innate and adaptive arms of the immune response, and help promote inflammatory resolution and tissue healing. Found extensively within the gingival crevice and epithelium, neutrophils are considered the key protective cell type in the periodontal tissues. Histopathology of periodontal lesions indicates that neutrophils form a 'wall' between the junctional epithelium and the pathogen-rich dental plaque which functions as a robust anti-microbial secretory structure and as a unified phagocytic apparatus. However, neutrophil protection is not without cost and is always considered a two-edged sword in that overactivity of neutrophils can cause tissue damage and prolong the extent and severity of inflammatory periodontal diseases. This review will cover the innate and inflammatory functions of neutrophils, and describe the importance and utility of neutrophils to the host response and the integrity of the periodontium in health and disease.
Collapse
Affiliation(s)
- David A Scott
- Center for Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
19
|
Otani T, Ikeda S, Lwin H, Arai T, Muramatsu M, Sawabe M. Polymorphisms of the formylpeptide receptor gene (FPR1) and susceptibility to stomach cancer in 1531 consecutive autopsy cases. Biochem Biophys Res Commun 2011; 405:356-61. [DOI: 10.1016/j.bbrc.2010.12.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 12/31/2010] [Indexed: 11/16/2022]
|
20
|
El Shamieh S, Herbeth B, Azimi-Nezhad M, Benachour H, Masson C, Visvikis-Siest S. Human formyl peptide receptor 1 C32T SNP interacts with age and is associated with blood pressure levels. Clin Chim Acta 2010; 413:34-8. [PMID: 21144844 DOI: 10.1016/j.cca.2010.11.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human formyl peptide receptor 1 (FPR1) mediates inflammatory responses, recognized as important participants in the physiopathology of hypertension. Similarly, FPR1 C32T SNP is associated with inflammation and BP related pathways. Therefore, the relationship between FPR1 C32T SNP, BP and hypertension needs to be investigated. METHOD 1012 French middle-aged adults including 491 healthy individuals (5 years follow-up, T(+0) and T(+5)) and 521 hypertensive individuals were PCR-RFLP genotyped for FPR1 C32T SNP (rs5030878). RESULTS At entrance, there was no significant association between FPR1 C32T SNP and blood pressure (BP) in healthy individuals. However, 5 years later, significant associations were found for DBP, SBP (p<0.001 and p=0.009 respectively) and for their 5 years changes (Δ) (p=0.025 and p=0.027 for DBP and SBP respectively). Significant interactions between FPR1 C32T SNP and age on DBP, SBP, ΔDBP and ΔSBP were found (p=0.014, 0.008, 0.015 and 0.015 respectively). Consequently, stronger increase in BP was reported among healthy individuals aged less than 45 years. When normotensive individuals were compared to hypertensives ones, similar FPR1 C32T genotypes and allele frequency distributions were found. CONCLUSION FPR1 C32T SNP interacts with age, is associated with higher and a 5 years increase of BP levels in healthy individuals aged less than 45 years.
Collapse
Affiliation(s)
- Said El Shamieh
- Unité de recherche Génétique Cardiovasculaire, EA-4373, Université Henri Poincaré-Nancy 1, Faculté de Pharmacie, Nancy, France
| | | | | | | | | | | |
Collapse
|
21
|
Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther 2010; 127:175-88. [PMID: 20546777 DOI: 10.1016/j.pharmthera.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/25/2010] [Indexed: 12/22/2022]
Abstract
The need for novel anti-inflammatory drugs justifies the search for innovative targets that could satisfy this goal. For quite some time now, we have proposed the study of endogenous anti-inflammation as a distinctive approach to the discovery of new drugs. This approach requires development of new compounds that activate specific receptor targets to downregulate the cellular and tissue pathways operative in the host during inflammation. Here we dwell on a family of G-protein coupled receptors (GPCR) termed FPRs, acronym for formyl-peptide receptors. With three and seven members in man and mouse, respectively, these receptors harness many biological functions, spanning odour perception and hair growth, to the control of multiple facets (pain; cell migration; oxidative burst; xenobiotic engulfment) of the inflammatory reaction. We focus on FPR biology with particular attention to molecules able to produce pharmacological effects by interacting with these GPCRs, describing endogenous agonists of FPRs and, more relevantly, the current development of synthetic agonists. Besides being potential leads for the development of the anti-inflammatory therapeutics of the future, these compounds could also help clarify the properties and roles that each FPR might play in the complex network of pathways that is inflammation. We conclude that FPR2 agonists could be valid warhorses for defining a novel philosophy for anti-inflammatory drug discovery programmes: mimicking - with new compounds - the way our body disposes of inflammation could be a viable approach to regulate aberrant inflammatory responses as in the case of several chronic rheumatic and cardiovascular pathologies.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|