1
|
Hsiao PY, Huang RY, Huang LW, Chu CL, Dyke TV, Mau LP, Cheng CD, Sung CE, Weng PW, Wu YC, Shieh YS, Cheng WC. MyD88 exacerbates inflammation-induced bone loss by modulating dynamic equilibrium between Th17/Treg cells and subgingival microbiota dysbiosis. J Periodontol 2024; 95:764-777. [PMID: 38523602 DOI: 10.1002/jper.23-0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND This study aimed to investigate the contribution of myeloid differentiation primary-response gene 88 (MyD88) on the differentiation of T helper type 17 (Th17) and regulatory T (Treg) cells and the emerging subgingival microbiota dysbiosis in Porphyromonas gingivalis-induced experimental periodontitis. METHODS Alveolar bone loss, infiltrated inflammatory cells, immunostained cells for tartrate-resistant acid phosphatase (TRAP), the receptor activator of nuclear factor-kB ligand (RANKL), and osteoprotegerin (OPG) were quantified by microcomputerized tomography and histological staining between age- and sex-matched homozygous littermates (wild-type [WT, Myd88+/+] and Myd88-/- on C57BL/6 background). The frequencies of Th17 and Treg cells in cervical lymph nodes (CLNs) and spleen were determined by flow cytometry. Cytokine expression in gingival tissues, CLNs, and spleens were studied by quantitative polymerase chain reaction (qPCR). Analysis of the composition of the subgingival microbiome and functional annotation of prokaryotic taxa (FAPROTAX) analysis were performed. RESULTS P. gingivalis-infected Myd88-/- mice showed alleviated bone loss, TRAP+ osteoclasts, and RANKL/OPG ratio compared to WT mice. A significantly higher percentage of Foxp3+CD4+ T cells in infected Myd88-/- CLNs and a higher frequency of RORγt+CD4+ T cells in infected WT mice was noted. Increased IL-10 and IL-17a expressions in gingival tissue at D14-D28 then declined in WT mice, whereas an opposite pattern was observed in Myd88-/- mice. The Myd88-/- mice exhibited characteristic increases in gram-positive species and species having probiotic properties, while gram-negative, anaerobic species were noted in WT mice. FAPROTAX analysis revealed increased aerobic chemoheterotrophy in Myd88-/- mice, whereas anaerobic chemoheterotrophy was noted in WT mice after P. gingivalis infection. CONCLUSIONS MyD88 plays an important role in inflammation-induced bone loss by modulating the dynamic equilibrium between Th17/Treg cells and dysbiosis in P. gingivalis-induced experimental periodontitis.
Collapse
Affiliation(s)
- Po-Yan Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Wei Huang
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Lian-Ping Mau
- Department of Periodontics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chiao Wu
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Li C, Zhou H, Gou H, Fan Z, Zhang Y, Tang P, Huang J, Xu Y, Li L. Autoinducer-2 produced by oral microbial flora and alveolar bone loss in periodontitis. J Periodontal Res 2024; 59:576-588. [PMID: 38411269 DOI: 10.1111/jre.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the association between autoinducer-2 (AI-2) of oral microbial flora and the alveolar bone destruction in periodontitis to determine if AI-2 may have the potential that monitor periodontitis and predict bone loss. BACKGROUND Plaque biofilm was the initiating factor of periodontitis and the essential factor of periodontal tissue destruction. The formation of biofilms depended on the complex regulation of the quorum sensing (QS) system, in which bacteria could sense changes in surrounding bacterial density by secreting the autoinducer (AI) to regulate the corresponding physiological function. Most oral bacteria also communicated with each other to form biofilms administrating the QS system, which implied that the QS system of periodontal pathogens was related to periodontitis, but the specific relationship was unknown. METHOD We collected the gingival crevicular fluid (GCF) samples and measured the concentration of AI-2 in samples using the Vibrio harveyi BB180 bioluminescent-reporter system. To explore the interaction between AI-2 and bone metabolism, we utilized AI-2 purified from Fusobacterium nucleatum to investigate the impact of F. nucleatum AI-2 on osteoclast differentiation. Moreover, we constructed murine periodontitis models and multi-species biofilm models to study the association between AI-2 and periodontal disease progression. RESULTS The AI-2 concentration in GCF samples increased along with periodontal disease progression (p < .0001). F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner. In the periodontitis mice model, the CEJ-ABC distance in the F. nucleatum AI-2 treatment group was higher than that in the simple ligation group (p < .01), and the maxilla of the mice in the group exhibited significantly lower BMD and BV/TV values (p < .05). CONCLUSIONS We demonstrated that the AI-2 concentration varied with the alveolar bone destruction in periodontitis, and it may have the potential for screening periodontitis. F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner and aggravated bone loss.
Collapse
Affiliation(s)
- Cheng Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hancheng Zhou
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Huiqing Gou
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zixin Fan
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yifei Zhang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Pengzhou Tang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiaxin Huang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
3
|
Su Y, Xu MY, Cui Y, Chen RZ, Xie LX, Zhang JX, Chen YQ, Ding T. Bacterial quorum sensing orchestrates longitudinal interactions to shape microbiota assembly. MICROBIOME 2023; 11:241. [PMID: 37926838 PMCID: PMC10626739 DOI: 10.1186/s40168-023-01699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The mechanism of microbiota assembly is one of the main problems in microbiome research, which is also the primary theoretical basis for precise manipulation of microbial communities. Bacterial quorum sensing (QS), as the most common means for bacteria to exchange information and interactions, is characterized by universality, specificity, and regulatory power, which therefore may influence the assembly processes of human microbiota. However, the regulating role of QS in microbiota assembly is rarely reported. In this study, we developed an optimized in vitro oral biofilm microbiota assembling (OBMA) model to simulate the time-series assembly of oral biofilm microbiota (OBM), by which to excavate the QS network and its regulating power in the process. RESULTS By using the optimized OBMA model, we were able to restore the assembly process of OBM and generate time-series OBM metagenomes of each day. We discovered a total of 2291 QS protein homologues related to 21 QS pathways. Most of these pathways were newly reported and sequentially enriched during OBM assembling. These QS pathways formed a comprehensive longitudinal QS network that included successively enriched QS hubs, such as Streptococcus, Veillonella-Megasphaera group, and Prevotella-Fusobacteria group, for information delivery. Bidirectional cross-talk among the QS hubs was found to play critical role in the directional turnover of microbiota structure, which in turn, influenced the assembly process. Subsequent QS-interfering experiments accurately predicted and experimentally verified the directional shaping power of the longitudinal QS network in the assembly process. As a result, the QS-interfered OBM exhibited delayed and fragile maturity with prolonged membership of Streptococcus and impeded membership of Prevotella and Fusobacterium. CONCLUSION Our results revealed an unprecedented longitudinal QS network during OBM assembly and experimentally verified its power in predicting and manipulating the assembling process. Our work provides a new perspective to uncover underlying mechanism in natural complex microbiota assembling and a theoretical basis for ultimately precisely manipulating human microbiota through intervention in the QS network. Video Abstract.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Ying Xu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Immunology and Pathogenic Biology, Zhaoqing Medical College, Zhaoqing, 526020, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Run-Zhi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Li-Xiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jing-Xiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yong-Qiu Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Klomp T, Jahr H, Abdelbary MMH, Conrads G. Evaluation of hydrocortisone as a strain-dependent growth-regulator of Porphyromonasgingivalis. Anaerobe 2023; 80:102698. [PMID: 36681234 DOI: 10.1016/j.anaerobe.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 μg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 μg/ml, while below 1.25 μg/ml and above 10 μg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.
Collapse
Affiliation(s)
- Tim Klomp
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany; Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen and Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany.
| |
Collapse
|
5
|
Polizzi A, Donzella M, Nicolosi G, Santonocito S, Pesce P, Isola G. Drugs for the Quorum Sensing Inhibition of Oral Biofilm: New Frontiers and Insights in the Treatment of Periodontitis. Pharmaceutics 2022; 14:2740. [PMID: 36559234 PMCID: PMC9781207 DOI: 10.3390/pharmaceutics14122740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.
Collapse
Affiliation(s)
- Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genova, 16132 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via Sofia 78, 95125 Catania, Italy
| |
Collapse
|
6
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
7
|
Mb CS, Ja MF, Ja SB, R VDLR, Jr IR, J MU, C C, N CDC. Structural variations on Salmonella biofilm by exposition to river water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1626-1643. [PMID: 33944621 DOI: 10.1080/09603123.2021.1901863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Biofilm formation, as adapting strategies, is the result of stressful conditions that Salmonella faces in hostile environments like surface water. We evaluated river water effect on Salmonella biofilm formation ability in terms of physical, morphological characteristics and chemical composition. A new morphotype SPAM (soft, pink and mucoid) was detected in Oranienburg strains S-76 and S-347 (environmental and clinical isolate). Oranienburg serotypes showed very marked behavior in adherence, pellicle liquid-air and resistance, being Oranienburg S-76 the strongest biofilm producer. All strains when exposed to river water presented an overlapping mucoid layer in the morphotype and increased their motility except Oranienburg S-347. The most motile was Typhimurium (control) and the least Infantis S-304 (clinical isolate). Mannose, glucose, galactose and ribose were the main biofilm sugar components; type and concentration of sugar suggest a morphotype/serotype dependent pattern. Strong morphotypes expressed in this study may be an effective protective strategy for Salmonella in hostile environments.
Collapse
Affiliation(s)
- Contreras-Soto Mb
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| | - Medrano-Félix Ja
- Cátedras CONACYT - Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| | - Sañudo-Barajas Ja
- Laboratorio de Fisiología y Bioquímica Vegetal, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| | - Vélez-de la Rocha R
- Laboratorio de Fisiología y Bioquímica Vegetal, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| | - Ibarra-Rodríguez Jr
- Centro de Investigación Oncológica de Sinaloa S. C, Departamento de Investigación Clínica, Culiacán, Sinaloa, México
| | - Martínez-Urtaza J
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Chaidez C
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| | - Castro-Del Campo N
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, México
| |
Collapse
|
8
|
Strategies to Combat Caries by Maintaining the Integrity of Biofilm and Homeostasis during the Rapid Phase of Supragingival Plaque Formation. Antibiotics (Basel) 2022; 11:antibiotics11070880. [PMID: 35884135 PMCID: PMC9312143 DOI: 10.3390/antibiotics11070880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria in the oral cavity, including commensals and opportunistic pathogens, are organized into highly specialized sessile communities, coexisting in homeostasis with the host under healthy conditions. A dysbiotic environment during biofilm evolution, however, allows opportunistic pathogens to become the dominant species at caries-affected sites at the expense of health-associated taxa. Combining tooth brushing with dentifrices or rinses combat the onset of caries by partially removes plaque, but resulting in the biofilm remaining in an immature state with undesirables’ consequences on homeostasis and oral ecosystem. This leads to the need for therapeutic pathways that focus on preserving balance in the oral microbiota and applying strategies to combat caries by maintaining biofilm integrity and homeostasis during the rapid phase of supragingival plaque formation. Adhesion, nutrition, and communication are fundamental in this phase in which the bacteria that have survived these adverse conditions rebuild and reorganize the biofilm, and are considered targets for designing preventive strategies to guide the biofilm towards a composition compatible with health. The present review summarizes the most important advances and future prospects for therapies based on the maintenance of biofilm integrity and homeostasis as a preventive measure of dysbiosis focused on these three key factors during the rapid phase of plaque formation.
Collapse
|
9
|
Inhibitory effect of d-arabinose on oral bacteria biofilm formation on titanium discs. Anaerobe 2022; 75:102533. [PMID: 35143955 DOI: 10.1016/j.anaerobe.2022.102533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/05/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Biofilm formation on dental implant surfaces can cause peri-implant mucositis and peri-implantitis. Lectins are involved in interactions between bacteria or between bacteria and their hosts. Disrupting these interactions via specific sugars can result in reduced adhesion and biofilm formation. The purpose of this study was to identify sugars that function as antiadhesion or antibiofilm agents on titanium discs. METHODS Of the sugars tested, the sugars that did not affect the planktonic growth of Streptococcus oralis, Fusobacterium nucleatum, and Porphyromonas gingivalis were selected. The selected sugars were assessed for their ability to inhibit biofilm formation of bacteria in single and consortium species by crystal violet staining, confocal laser scanning microscopy after live/dead staining, and scanning electron microscopy. The sugars were evaluated for their ability to inhibit activity of the quorum sensing molecule autoinducer 2 (AI-2) by bioluminescence assay. RESULTS Biofilm formation of single bacteria or consortia of S. oralis, F. nucleatum, and P. gingivalis on titanium discs was significantly inhibited in the presence of d-arabinose. Pretreating titanium discs with d-arabinose for 3 min inhibited biofilm formation at a level comparable to that observed when d-arabinose was present over the entire period, suggesting that d-arabinose had initial anti-adhesive activity. In addition, d-arabinose inhibited the activity of AI-2. CONCLUSIONS d-Arabinose may be a good candidate for application as an antibiofilm agent and AI-2 inhibitor.
Collapse
|
10
|
Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN, Zhu B, Sahingur SE. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front Immunol 2021; 12:774273. [PMID: 34899728 PMCID: PMC8663773 DOI: 10.3389/fimmu.2021.774273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Failure to attenuate inflammation coupled with consequent microbiota changes drives the development of bone-destructive periodontitis. Quercetin, a plant-derived polyphenolic flavonoid, has been linked with health benefits in both humans and animals. Using a systematic approach, we investigated the effect of orally delivered Quercetin on host inflammatory response, oral microbial composition and periodontal disease phenotype. In vivo, quercetin supplementation diminished gingival cytokine expression, inflammatory cell infiltrate and alveolar bone loss. Microbiome analyses revealed a healthier oral microbial composition in Quercetin-treated versus vehicle-treated group characterized by reduction in the number of pathogenic species including Enterococcus, Neisseria and Pseudomonas and increase in the number of non-pathogenic Streptococcus sp. and bacterial diversity. In vitro, Quercetin diminished inflammatory cytokine production through modulating NF-κB:A20 axis in human macrophages following challenge with oral bacteria and TLR agonists. Collectively, our findings reveal that Quercetin supplement instigates a balanced periodontal tissue homeostasis through limiting inflammation and fostering an oral cavity microenvironment conducive of symbiotic microbiota associated with health. This proof of concept study provides key evidence for translational studies to improve overall health.
Collapse
Affiliation(s)
- Erin C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sara E. Holden
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yajie Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Camille N. Banson
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Zhu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Niazy AA. LuxS quorum sensing system and biofilm formation of oral microflora: A short review article. Saudi Dent J 2021; 33:116-123. [PMID: 33679103 PMCID: PMC7910685 DOI: 10.1016/j.sdentj.2020.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
The LuxS quorum sensing system is considered as the main system that most of the oral bacteria use to communicate in order to create biofilms. Here we identified 11 of the most important biofilm formers that utilize the LuxS system and presented current and recent information regarding this system. Though different bacterial species are able to communicate thorough the LuxS system, it was also found that cross kingdom communication can occur between bacteria and fungi and bacteria and epithelial cells. Immune response also plays and important role in mitigating the effects of biofilms. Here we identified 6 of the most important molecules that are involved in the immune response to biofilms. These immune molecules maintain the stability in the oral cavity by preventing bacteria from overwhelming the space and simultaneously minimizing the immune response in order not to cause tissue damage. Here we also discuss current research being done in order to maintain the balance in the oral cavity via inhibiting biofilm formation without eradicating oral bacteria in order to prevent the overgrowth of other organisms such as Candida albicans. One approach being used is inhibiting AI-2 intermediates which leads to lack of quorum sensing communication between bacteria through the use of intermediate analogues. Another approach that found success is the utilization of D forms of sugars where D-ribose and D-galactose have been proven to inhibit the LuxS system and subsequently preventing the process of quorum sensing leading to the reduction in biofilm formation.
Collapse
Affiliation(s)
- Abdurahman A. Niazy
- Address: Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
12
|
Muras A, Mallo N, Otero-Casal P, Pose-Rodríguez JM, Otero A. Quorum sensing systems as a new target to prevent biofilm-related oral diseases. Oral Dis 2020; 28:307-313. [PMID: 33080080 DOI: 10.1111/odi.13689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study summarizes the current knowledge on the role of bacterial extracellular signaling systems, known as quorum sensing (QS), in oral biofilm formation, and on the possibility of blocking these microbial communication systems as a potential approach to prevent and treat oral infectious diseases. METHODS A detailed literature review of the current knowledge of QS in the oral cavity was performed, using the databases MEDLINE (through PubMed) and Web of Science. RESULTS Accumulating direct and indirect evidence indicates an important role of QS molecules in the oral microbial ecosystem. CONCLUSIONS The mechanisms regulating gene expression through bacterial communication systems constitute a promising target to control oral biofilm formation. Although cell-to-cell communication is pivotal for biofilm formation of many pathogenic bacteria, knowledge concerning microbial interactions and signaling processes within multispecies biofilms in the oral cavity is still limited.
Collapse
Affiliation(s)
- Andrea Muras
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Natalia Mallo
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialty, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Santa Comba, Spain
| | - José M Pose-Rodríguez
- Department of Surgery and Medical-Surgical Specialty, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Boyer E, Leroyer P, Malherbe L, Fong SB, Loréal O, Bonnaure Mallet M, Meuric V. Oral dysbiosis induced by Porphyromonas gingivalis is strain-dependent in mice. J Oral Microbiol 2020; 12:1832837. [PMID: 33133418 PMCID: PMC7580739 DOI: 10.1080/20002297.2020.1832837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background:Porphyromonas gingivalis strain W83, one of the most widely investigated, is considered virulent in the context of periodontitis. The recently isolated P. gingivalis TDC60 has been reported to be highly pathogenic, although it has not yet been investigated in a mouse periodontitis model by oral gavage. Aim: Our aim was to compare the virulence of both strains by evaluating their impact on alveolar bone loss and the composition of oral microbiota. Methods: We inoculated by oral gavage C57BL/6 mice with either one of the two P. gingivalis strains and compared to a sham-treated group, without antibiotics pre-treatment. The mandibular alveolar bone of treated mice and controls were assessed, one month after the final inoculation, by microCT measurements. Moreover, at this time, we characterized their oral microbiota by 16S rRNA gene sequencing. Results: While P. gingivalis W83 successfully initiated periodontitis, TDC60-treated mice only experienced moderate lesions. Furthermore, only W83-treated mice exhibited a specific distinct microbiota, with significantly lower richness and evenness than other samples, and decreased proportions of taxa usually found in healthy individuals. Conclusion: This association between alveolar bone loss and a major persistent shift of the oral microbiota gives insights into virulence discrepancies among these bacterial strains.
Collapse
Affiliation(s)
- Emile Boyer
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Patricia Leroyer
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| | | | - Shao Bing Fong
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Olivier Loréal
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Martine Bonnaure Mallet
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
14
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
15
|
Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10:9800. [PMID: 32555242 PMCID: PMC7300016 DOI: 10.1038/s41598-020-66704-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acyl homoserine lactones (AHLs), the quorum sensing (QS) signals produced by Gram-negative bacteria, are currently considered to play a minor role in the development of oral biofilm since their production by oral pathogens has not been ascertained thus far. However, we report the presence of AHLs in different oral samples and their production by the oral pathogen Porphyromonas gingivalis. The importance of AHLs is further supported by a very high prevalence of AHL-degradation capability, up to 60%, among bacteria isolated from dental plaque and saliva samples. Furthermore, the wide-spectrum AHL-lactonase Aii20J significantly inhibited oral biofilm formation in different in vitro biofilm models and caused important changes in bacterial composition. Besides, the inhibitory effect of Aii20J on a mixed biofilm of 6 oral pathogens was verified using confocal microscopy. Much more research is needed in order to be able to associate specific AHLs with oral pathologies and to individuate the key actors in AHL-mediated QS processes in dental plaque formation. However, these results indicate a higher relevance of the AHLs in the oral cavity than generally accepted thus far and suggest the potential use of inhibitory strategies against these signals for the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Departamento de Ciruxía e Especialidade Médico-Cirúrxica, Facultade de Medicina e Odontoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Dentaid S.L., Barcelona, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Brandt B, Rashidiani S, Bán Á, Rauch TA. DNA Methylation-Governed Gene Expression in Autoimmune Arthritis. Int J Mol Sci 2019; 20:E5646. [PMID: 31718084 PMCID: PMC6888626 DOI: 10.3390/ijms20225646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease hallmarked by progressive and irreversible joint destruction. RA pathogenesis is a T cell-regulated and B cell-mediated process in which activated lymphocyte-produced chemokines and cytokines promote leukocyte infiltration that ultimately leads to destruction of the joints. There is an obvious need to discover new drugs for RA treatment that have different biological targets or modes of action than the currently employed therapeutics. Environmental factors such as cigarette smoke, certain diet components, and oral pathogens can significantly affect gene regulation via epigenetic factors. Epigenetics opened a new field for pharmacology, and DNA methylation and histone modification-implicated factors are feasible targets for RA therapy. Exploring RA pathogenesis involved epigenetic factors and mechanisms is crucial for developing more efficient RA therapies. Here we review epigenetic alterations associated with RA pathogenesis including DNA methylation and interacting factors. Additionally, we will summarize the literature revealing the involved molecular structures and interactions. Finally, potential epigenetic factor-based therapies will be discussed that may help in better management of RA in the future.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Shima Rashidiani
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
| | - Ágnes Bán
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs 7621, Hungary;
| | - Tibor A. Rauch
- Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; (B.B.); (S.R.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs 7624, Hungary
| |
Collapse
|
17
|
du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev 2019; 43:1-18. [PMID: 30219863 DOI: 10.1093/femsre/fuy035] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial communities inhabiting the human body, collectively called the microbiome, are critical modulators of immunity. This notion is underpinned by associations between changes in the microbiome and particular autoimmune disorders. Specifically, in rheumatoid arthritis, one of the most frequently occurring autoimmune disorders worldwide, changes in the oral and gut microbiomes have been implicated in the loss of tolerance against self-antigens and in increased inflammatory events promoting the damage of joints. In the present review, we highlight recently gained insights in the roles of microbes in the etiology of rheumatoid arthritis. In addition, we address important immunomodulatory processes, including biofilm formation and neutrophil function, which have been implicated in host-microbe interactions relevant for rheumatoid arthritis. Lastly, we present recent advances in the development and evaluation of emerging microbiome-based therapeutic approaches. Altogether, we conclude that the key to uncovering the etiopathogenesis of rheumatoid arthritis will lie in the immunomodulatory functions of the oral and gut microbiomes.
Collapse
Affiliation(s)
- Marines du Teil Espina
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Giorgio Gabarrini
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
18
|
Ben Amara H, Song HY, Ryu E, Park JS, Schwarz F, Kim BM, Choi BK, Koo KT. Effects of quorum-sensing inhibition on experimental periodontitis induced by mixed infection in mice. Eur J Oral Sci 2018; 126:449-457. [PMID: 30230039 DOI: 10.1111/eos.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
This study aimed to verify, in in vivo settings, whether quorum-sensing inhibition molecules could attenuate alveolar bone loss induced by Porphyromonas gingivalis/Fusobacterium nucleatum co-infection and reduce the bacterial colonization of periodontal tissues. In BALB/c mice, periodontitis was induced through oral inoculation with P. gingivalis and F. nucleatum six times during a 42-d period. Quorum sensing inhibitors (a furanone compound and D-ribose) were administered simultaneously with bacterial infection. Linear and volumetric modifications of interproximal alveolar bone levels were compared between groups using micro-computed tomography. Total bacteria, and P. gingivalis and F. nucleatum DNA in periodontal tissues, were quantified using real-time PCR. Radiographic linear measurements demonstrated a significant reduction of alveolar bone loss, of approximately 40%, in mice treated with quorum sensing inhibitors when compared with the co-infection group. This was confirmed by a significant increase of residual bone volume in the test group. While total bacterial genes in the treatment group significantly decreased by 93% in periodontal tissue samples when quorum sensing inhibitors were administered, no significant differences of P. gingivalis DNA were found. Quorum sensing inhibitors reduced periodontal breakdown and bacterial infection in periodontal tissues after co-infection with P. gingivalis and F. nucleatum.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| | - Hyun Y Song
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| | - Eunju Ryu
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ji S Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Frank Schwarz
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Byeong M Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Li H, Li X, Song C, Zhang Y, Wang Z, Liu Z, Wei H, Yu J. Autoinducer-2 Facilitates Pseudomonas aeruginosa PAO1 Pathogenicity in Vitro and in Vivo. Front Microbiol 2017; 8:1944. [PMID: 29089927 PMCID: PMC5651085 DOI: 10.3389/fmicb.2017.01944] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 02/01/2023] Open
Abstract
Bacterial communication systems, such as quorum sensing (QS), have provided new insights of alternative approaches in antimicrobial treatment. We recently reported that one QS signal, named as autoinducer-2 (AI-2), can affect the behaviors of Pseudomonas aeruginosa PAO1 in a dose-dependent manner. In this study, we aimed to investigate the effects of AI-2 on P. aeruginosa PAO1 biofilm formation and virulence factors production in vitro, and in vivo using a pulmonary infection mouse model. Exogenous AI-2 resulted in increased biofilms architecture, the number of viable cells, and the yield of pyocyanin and elastase virulence factors in wild type P. aeruginosa PAO1. However, no such effect was observed in P. aeruginosa lasR rhlR mutant strain. In vivo, the use of AI-2 significantly increased the mortality, lung bacterial count and histological lung damage of mice with acute P. aeruginosa PAO1 infection. Our data suggest that AI-2 promotes the formation of P. aeruginosa PAO1 biofilms and the production of virulence factors by interfering with P. aeruginosa QS systems, resulting in decreased host survival. AI-2 may be a therapeutic target for the clinical treatment of a co-infection of P. aeruginosa and AI-2 producing bacteria.
Collapse
Affiliation(s)
- Hongdong Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xingyuan Li
- Department of Pharmacy, Chongqing Red Cross Hospital, Chongqing, China
| | - Chao Song
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yunhui Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhengli Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhenqiu Liu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Hong Wei
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
20
|
Liu L, Wu R, Zhang J, Shang N, Li P. D-Ribose Interferes with Quorum Sensing to Inhibit Biofilm Formation of Lactobacillus paraplantarum L-ZS9. Front Microbiol 2017; 8:1860. [PMID: 29018429 PMCID: PMC5622935 DOI: 10.3389/fmicb.2017.01860] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/12/2017] [Indexed: 01/31/2023] Open
Abstract
Biofilms help bacteria survive under adverse conditions, and the quorum sensing (QS) system plays an important role in regulating their activities. Quorum sensing inhibitors (QSIs) have great potential to inhibit pathogenic biofilm formation and are considered possible replacements for antibiotics; however, further investigation is required to understand the mechanisms of action of QSIs and to avoid inhibitory effects on beneficial bacteria. Lactobacillus paraplantarum L-ZS9, isolated from fermented sausage, is a bacteriocin-producing bacteria that shows potential to be a probiotic starter. Since exogenous autoinducer-2 (AI-2) promoted biofilm formation of the strain, expression of genes involved in AI-2 production was determined in L. paraplantarum L-ZS9, especially the key gene luxS. D-Ribose was used to inhibit biofilm formation because of its AI-2 inhibitory activity. Twenty-seven differentially expressed proteins were identified by comparative proteomic analysis following D-ribose treatment and were functionally classified into six groups. Real-time quantitative PCR showed that AI-2 had a counteractive effect on transcription of the genes tuf, fba, gap, pgm, nfo, rib, and rpoN. Over-expression of the tuf, fba, gap, pgm, and rpoN genes promoted biofilm formation of L. paraplantarum L-ZS9, while over-expression of the nfo and rib genes inhibited biofilm formation. In conclusion, D-ribose inhibited biofilm formation of L. paraplantarum L-ZS9 by regulating multiple genes involved in the glycolytic pathway, extracellular DNA degradation and transcription, and translation. This research provides a new mechanism of QSI regulation of biofilm formation of Lactobacillus and offers a valuable reference for QSI application in the future.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinlan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Shang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Gerits E, Verstraeten N, Michiels J. New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol 2017; 9:1300366. [PMID: 28473880 PMCID: PMC5405727 DOI: 10.1080/20002297.2017.1300366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/01/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections.
Collapse
Affiliation(s)
- Evelien Gerits
- Department of Microbial and Molecular Systems, KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Natalie Verstraeten
- Department of Microbial and Molecular Systems, KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Jan Michiels
- Department of Microbial and Molecular Systems, KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| |
Collapse
|