1
|
Hemmati YB, Bahrami R, Pourhajibagher M. Assessing the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing different concentrations of photoactivated zinc oxide nanoparticles on Streptococcus mutans biofilm around ceramic and metal orthodontic brackets: An ex vivo study. Int Orthod 2024; 22:100901. [PMID: 39173494 DOI: 10.1016/j.ortho.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate the physico-mechanical, anti-bacterial, and anti-demineralization properties of orthodontic resin composite containing photoactivated zinc oxide nanoparticles (ZnONPs) on Streptococcus mutans biofilm around ceramic and metal brackets. MATERIAL AND METHODS Following the minimum inhibitory concentration (MIC) determination for ZnONPs, shear bond strength (SBS) was tested for composites containing different concentrations of ZnONPs. The chosen concentration was used to evaluate the microleakage, anti-bacterial, and anti-demineralization properties. RESULTS Adding 50μg/mL of ZnONPs to the orthodontic composite did not negatively affect its physico-mechanical properties. ZnONPs (50μg/mL)-mediated aPDT and 0.2% chlorhexidine significantly (P=0.000) reduced S. mutans biofilms compared to the phosphate-buffered saline (PBS) groups (metal/PBS=7.47±0.7×106, and ceramic/PBS=7.47±0.7×106), with the lowest colony count observed in these groups (metal/chlorhexidine=1.06±0.4×105, ceramic/chlorhexidine=1±0.2×105, metal/ZnONPs-mediated aPDT=1.33±0.3×105, and ceramic/ZnONPs-mediated aPDT=1.2±0.3×105). Sodium fluoride varnish and ZnONPs-mediated aPDT showed the highest efficacy in anti-demineralization and significantly improving the enamel surface microhardness compared to the artificial saliva, especially in ceramic bracket groups (524.17±42.78N and 441.00±29.48N, 394.17±46.83N, P=0.000, and P=0.003, respectively). CONCLUSION ZnONPs (50μg/mL)-mediated aPDT effectively inhibited S. mutans biofilm and promoted anti-demineralization without adverse effects on the physico-mechanical properties of the composite resin. These results suggest the potential of this method in preventing white spot lesions during orthodontic treatment.
Collapse
Affiliation(s)
- Yasamin Babaee Hemmati
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Evaluation and comparison of the effect of incorporating zinc oxide and titanium dioxide nanoparticles on the bond strength and microleakage of two orthodontic fixed retainer adhesives. J World Fed Orthod 2023; 12:22-28. [PMID: 36456427 DOI: 10.1016/j.ejwf.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND An adhesive with both proper mechanical and antimicrobial properties seems to be beneficial. We aimed to investigate the effect of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on bond strength and microleakage of two different fixed retainer adhesives. METHODS In this in vitro experimental study, 168 extracted human incisors were randomly divided into six groups of 28 (eight double-tooth specimens for the bond strength test and 12 specimens for the microleakage test). In three groups: Transbond XT (3M Unitek, Monrovia, CA) without NPs, with 1% ZnO NPs and with 1% TiO2 NPs were applied. The other three groups included Ortho Connect Flow (GC orthodontics, Tokyo, Japan) composite with the same order to bond a 0.175-inch multistrand wire to the lingual surfaces of the teeth. The bond strength was measured using the Universal Testing Machine, and the adhesive remnant index was reported using a stereomicroscope (Nikon, SMZ800, Tokyo, Japan). The dye-penetration method was used to determine the microleakage. RESULTS For bond strength, there was no significant difference among groups. For microleakage, there was no significant difference between GC and Transbond XT groups. However, in subgroups of Transbond XT, the addition of TiO2 NPs increased the microleakage significantly in comparison with ZnO and control groups (P = 0.011). There was no significant statistical difference between the groups in terms of residual adhesives (P = 0.166). CONCLUSIONS Through the incorporation of 1% TiO2 and ZnO NPs into the fixed retainer adhesive, the bond strength was maintained within the clinically acceptable range. The addition of TiO2 NPs to Transbond XT significantly increased the percentage of microleakage.
Collapse
|
3
|
Pushpalatha C, Suresh J, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Mohammad Albar NH, Patil S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front Bioeng Biotechnol 2022; 10:917990. [PMID: 35662838 PMCID: PMC9160914 DOI: 10.3389/fbioe.2022.917990] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology in modern material science is a research hot spot due to its ability to provide novel applications in the field of dentistry. Zinc Oxide Nanoparticles (ZnO NPs) are metal oxide nanoparticles that open new opportunities for biomedical applications that range from diagnosis to treatment. The domains of these nanoparticles are wide and diverse and include the effects brought about due to the anti-microbial, regenerative, and mechanical properties. The applications include enhancing the anti-bacterial properties of existing restorative materials, as an anti-sensitivity agent in toothpastes, as an anti-microbial and anti-fungal agent against pathogenic oral microflora, as a dental implant coating, to improve the anti-fungal effect of denture bases in rehabilitative dentistry, remineralizing cervical dentinal lesions, increasing the stability of local drug delivery agents and other applications.
Collapse
Affiliation(s)
- C Pushpalatha
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jithya Suresh
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - VS Gayathri
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - SV Sowmya
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ahmed Alamoudi
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Zidane
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Shwajra Campus, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, Bashardoust N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 2021; 11:21189-21206. [PMID: 35479373 PMCID: PMC9034121 DOI: 10.1039/d0ra10789a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology is an emerging field of science, engineering, and technology concerning the materials in nanoscale dimensions. Several materials are used in dentistry, which can be modified by applying nanotechnology. Nanotechnology has various applications in dentistry to achieve reliable treatment outcomes. The most common nanometals used in dental materials are gold, silver, copper oxide, magnesium oxide, iron oxide, cerium oxide, aluminum oxide, titanium dioxide, and zinc oxide (ZnO). ZnO nanoparticles (NPs), with their unparalleled properties such as high selectivity, enhanced cytotoxicity, biocompatibility, and easy synthesis as important materials were utilized in the field of dentistry. With this background, the present review aimed to discuss the current progress and gain an insight into applications of ZnO NPs in nanodentistry, including restorative, endodontic, implantology, periodontal, prosthodontics, and orthodontics fields.
Collapse
Affiliation(s)
- Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Negin Bashardoust
- Students Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
5
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
6
|
Agnihotri R, Gaur S, Albin S. Nanometals in Dentistry: Applications and Toxicological Implications-a Systematic Review. Biol Trace Elem Res 2020; 197:70-88. [PMID: 31782063 DOI: 10.1007/s12011-019-01986-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
Abstract
Nanotechnology is a vital part of health care system, including the dentistry. This branch of technology has been incorporated into various fields of dentistry ranging from diagnosis to prevention and treatment. The latter involves application of numerous biomaterials that help in restoration of esthetic and functional dentition. Over the past decade, these materials were modified through the incorporation of metal nanoparticles (NP) like silver (Ag), gold (Au), titanium (Ti), zinc (Zn), copper (Cu), and zirconia (Zr). They enhanced antimicrobial, mechanical, and regenerative properties of these materials. However, lately, the toxicological implications of these nanometal particles have been realized. They were associated with cytotoxicity, genotoxicity altered inflammatory processes, and reticuloendothelial system toxicity. As dental biomaterials containing metal NPs remain functional in oral cavity over prolonged periods, it is important to know their toxicological effects in humans. With this background, the present systematic review is aimed to gain an insight into the plausible applications and toxic implications of nano-metal particles as related to dentistry.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Sacharia Albin
- Engineering Department, Norfolk State University, Norfolk, VA, 23504, USA
| |
Collapse
|
7
|
Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, Dubey SK, Kesharwani P. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm 2020; 586:119596. [DOI: 10.1016/j.ijpharm.2020.119596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
8
|
Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today 2019; 24:85-98. [DOI: 10.1016/j.drudis.2018.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
|