1
|
Mekkawy MH, Abdou FY, Ali MM, Abd-ElRaouf A. A novel approach of using Maca root as a radioprotector in a rat testicular damage model focusing on GRP78/CHOP/Caspase-3 pathway. Arch Biochem Biophys 2024; 755:109963. [PMID: 38518815 DOI: 10.1016/j.abb.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE Despite the effectiveness of ionizing radiation in treating cancer, it can damage healthy tissues in the vicinity. Due to the high radio-sensitivity of testicular tissues, radiation therapy may affect spermatogenesis, which may result in infertility. Hence, in this study testicular damage model is constructed to investigate the mitigation effect of Maca root powder and its potential radioprotective activity through both oxidative and endoplasmic reticulum (ER) stresses, besides the apoptotic pathway. METHODS Male albino rats were exposed to 6Gy of whole-body gamma radiation single dose. Maca root powder (1 g/kg b.wt./day, by oral gavage) was administered for a week before irradiation, then d-galactose (300 mg/kg, by oral gavage) and Maca daily for another week. RESULTS Gamma radiation and d-galactose revealed a significant decrease in serum testosterone, sperm count, and motility and higher percentage of the sperm head abnormality, while Maca root treatment maintained all sperm morphology parameters. Maca root treatment demonstrated a notable defense against radiation-induced oxidative stress and ameliorated malonaldehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), glutathione-S-transferase (GST) levels, reduced glutathione (GSH), oxidized glutathione (GSSG) and the ratio of GSH/GSSG in testis tissues. Exposure to gamma rays and d-galactose displayed a significant elevation in GRP78, CHOP, total caspase-3 as well as active (cleaved) caspase-3 levels, whereas treatment with Maca significantly reduced the ER and apoptotic markers levels. Also, Maca improved the histological changes of the disorganized seminiferous tubules induced by irradiation. CONCLUSION Our findings show for the first time that Maca has a protective effect on male reproductive damage induced by radiotherapy. Maca root reveals anti-apoptotic effect and protection against testicular damage via GRP78/CHOP/caspase-3 pathway.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Maha M Ali
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
2
|
Spandole-Dinu S, Catrina AM, Voinea OC, Andone A, Radu S, Haidoiu C, Călborean O, Hertzog RG, Popescu DM. Evaluating the radioprotective effect of green barley juice on male rats. Int J Radiat Biol 2024; 100:281-288. [PMID: 37769021 DOI: 10.1080/09553002.2023.2264923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE DNA damage accounts for most biological effects of ionizing radiation. Antioxidants are known for their protective effect by preventing DNA damage. This pilot study aimed to evaluate the potential radioprotective effect of Natural SOD®, a green barley juice rich in antioxidants, on DNA damage in the testes and lymphocytes of Wistar rats exposed to ionizing radiation. MATERIALS AND METHODS Male Wistar rats (n = 15) were selected and equally divided into three groups. Rats in one of the groups were pretreated orally with Natural SOD® for 14 days, while rats in another group were sham-pretreated with saline solution. Rats in both these groups were afterwards subjected to a single dose of 6 Gy X-ray whole-body irradiation. The control group did not receive any treatment and was not irradiated. Shortly after X-ray exposure, all rats were sacrificed and testes and blood were collected. Gamma-H2AX and histopathological assessment in the testes, along with comet assay of lymphocytes were performed. RESULTS Histopathological examination of the testes showed no significant architectural alterations. Immunofluorescent staining of γ-H2AX revealed more DNA double-strand break sites in testicular cells from sham animals compared to Natural SOD® pretreated rats. Alkaline comet assay results showed increased DNA damage in lymphocytes of irradiated rats compared to the control group with little differences between the pretreated groups. Animals pretreated with Natural SOD showed slightly reduced DNA damage compared to sham-pretreated rats. These findings suggest a potential protective effect of Natural SOD® against radiation-induced DNA damage. CONCLUSIONS Natural SOD® exhibited a potential prophylactic radioprotective effect in rats, particularly in testes. Further investigations to determine medium and long-term effects of X-ray in animals administered Natural SOD® are needed to better estimate the radioprotective effect.
Collapse
Affiliation(s)
- Sonia Spandole-Dinu
- Experimental Radiobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Ana-Maria Catrina
- Neurobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Oana Cristina Voinea
- Experimental Pharmacotoxicology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
- Pathology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Alina Andone
- Experimental Radiobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Speranța Radu
- Experimental Radiobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Cerasela Haidoiu
- Neurobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Octavian Călborean
- Experimental Radiobiology Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Radu Gabriel Hertzog
- National Center for Expertise and Intervention in Public Health for CBRN agents, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| | - Diana Mihaela Popescu
- Regenerative Medicine Laboratory, Cantacuzino National Medical Military Institute for Research and Development, Bucharest, Romania
| |
Collapse
|
3
|
Ghahfarrokhi SH, Heidari-Soureshjani S, Sherwin CMT, Azadegan-Dehkordi Z. Efficacy and Mechanisms of Silybum Marianum, Silymarin, and Silibinin on Rheumatoid Arthritis and Osteoarthritis Symptoms: A Systematic Review. Curr Rheumatol Rev 2024; 20:414-425. [PMID: 38314596 DOI: 10.2174/0115733971266397231122080247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most common forms of skeletal disease worldwide. OBJECTIVE The current systematic review investigated the mechanisms of Silybum marianum, silymarin, and silibinin on RA and OA symptoms. METHODS The PRISMA 2020 statement was used for reporting Items in this systematic review. The result was a list of five databases, including Web of Science, Cochrane Library, Embase, PubMed, and Scopus. After determining the inclusion and exclusion criteria, of 437 records identified, 21 studies were eligible. The data were extracted from the studies and imported into an Excel form, and finally, the effects, outcomes, and associated mechanisms were surveyed. RESULTS Silybum marianum and its main constituents revealed immunomodulatory, anti-inflammatory, antioxidant, and anti-apoptotic properties in humans and laboratory animals. Moreover, they protect the joints against the cartilage matrix's hypocellularity and fibrillation, reduce synovitis, and inhibit degeneration of aggrecan and collagen-II in human chondrocytes. They also, through reducing inflammatory cytokines, show an analgesic effect. Although silymarin and silibinin have low absorption, their bioavailability can be increased with nanoparticles. CONCLUSION In experimental studies, Silybum marianum, silymarin, and silibinin revealed promising effects on RA and OA symptoms. However, more clinical studies are needed in this field to obtain reliable results and clinical administration of these compounds.
Collapse
Affiliation(s)
- Shahrzad Habibi Ghahfarrokhi
- Department of Social Medicine, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Social Determinants of Health Research Center, Shahrekord, Iran
| | | | - Catherine M T Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Azmoonfar R, Mirzaei F, Najafi M, Varkeshi M, Ghazikhanlousani K, Momeni S, Saber K. Radiation-induced Testicular Damage in Mice: Protective Effects of Apigenin Revealed by Histopathological Evaluation. Curr Radiopharm 2024; 17:238-246. [PMID: 38314599 DOI: 10.2174/0118744710271290231226105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Radiation exposure poses a significant threat to reproductive health, particularly the male reproductive system. The testes, being highly sensitive to radiation, are susceptible to damage that can impair fertility and overall reproductive function. The study aims to investigate the radioprotective effects of apigenin on the testis through histopathological evaluation. MATERIALS AND METHODS This research involved utilizing a total of 40 mice, which were randomly divided into eight groups of five mice each. The groups were categorized as follows: A) negative control group, B, C, and D) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) respectively, E) irradiation group, and F, H, and I) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) in combination with irradiation. The irradiation procedure involved exposing the mice to a 2Gy X-ray throughout their entire bodies. Subsequently, histopathological assessments were conducted seven days after the irradiation process. RESULTS The findings indicated that radiation exposure significantly impacted the spermatogenesis system. This research provides evidence that administering apigenin to mice before ionizing radiation effectively mitigated the harmful effects on the testes. Apigenin demonstrated radioprotective properties, positively influencing various parameters, including the spermatogenesis process and the presence of inflammatory cells within the tubular spaces. CONCLUSION Apigenin can provide effective protection for spermatogenesis, minimize the adverse effects of ionizing radiation, and safeguard normal tissues.
Collapse
Affiliation(s)
- Rasool Azmoonfar
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Varkeshi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Karim Ghazikhanlousani
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Momeni
- Department of Radiology, School of Paramedical Sciences, Torbat Heydarieh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Korosh Saber
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Ghodousi M, Karbasforooshan H, Arabi L, Elyasi S. Silymarin as a preventive or therapeutic measure for chemotherapy and radiotherapy-induced adverse reactions: a comprehensive review of preclinical and clinical data. Eur J Clin Pharmacol 2023; 79:15-38. [PMID: 36450892 DOI: 10.1007/s00228-022-03434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Thus far, silymarin has been examined in several studies for prevention or treatment of various chemotherapy or radiotherapy-induced adverse reactions. In this review, we try to collect all available human, animal, and pre-clinical data in this field. METHODS The search was done in Scopus, PubMed, Medline, and systematic reviews in the Cochrane database, using the following keywords: "Cancer," "Chemotherapy," "Radiotherapy," "Mucositis," "Nephrotoxicity," "Dermatitis," "Ototoxicity," "Cardiotoxicity," "Nephrotoxicity," "Hepatotoxicity," "Reproductive system," "Silybum marianum," "Milk thistle," and "Silymarin" and "Silybin." We included all relevant in vitro, in vivo, and human studies up to the date of publication. RESULTS Based on 64 included studies in this review, silymarin is considered a safe and well-tolerated compound, with no known clinical drug interaction. Notably, multiple adverse reactions of chemotherapeutic agents are effectively managed by its antioxidant, anti-apoptotic, anti-inflammatory, and anti-immunomodulatory properties. Clinical trials suggest that oral silymarin may be a promising adjuvant with cancer treatments, particularly against hepatotoxicity (n = 10), nephrotoxicity (n = 3), diarrhea (n = 1), and mucositis (n = 3), whereas its topical formulation can be particularly effective against radiodermatitis (n = 2) and hand-foot syndrome (HFS) (n = 1). CONCLUSION Further studies are required to determine the optimal dose, duration, and the best formulation of silymarin to prevent and/or manage chemotherapy and radiotherapy-induced complications.
Collapse
Affiliation(s)
- Mahsa Ghodousi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Demyashkin G, Koryakin S, Moiseev A, Saburov V, Zatsepina M, Epifanova M, Stepanova Y, Shchekin V, Vadyukhin M, Shegay P, Kaprin A. Assessment of Proliferation and Apoptosis in Testes of Rats after Experimental Localized Electron Irradiation. Curr Issues Mol Biol 2022; 44:5768-5777. [PMID: 36421675 PMCID: PMC9689034 DOI: 10.3390/cimb44110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of linear accelerators in radiotherapy, it becomes necessary to accurately select new dosing regimens. The purpose of this study was to assess the morphological changes of spermatogenesis after radiation exposure. MATERIALS AND METHODS Male Wistar rats (n = 40) were subjected to targeted ionizing radiation on a pulsed electron accelerator "NOVAC-11" with doses of 2, 8 and 12 Gy. Spermatogenesis was assessed a week later using light microscopy and immunohistochemical method (antibodies to Ki-67, Bcl-2, p53, Caspase 3). RESULTS A decrease in the number of normal germ cells was seen in all experimental groups, while radioresistant Sertoli and Leydig cells were barely affected. The most serious damage to the tubules and germ cells was observed in 8 and 12 Gy irradiation groups. IHC analysis of testes after irradiation showed a shift in the proliferative-apoptotic balance toward apoptosis of germ cells: a decrease in the expression levels of Ki-67 and Bcl-2, an increase in p53-positive and caspase 3-positive cells by the end of the experiment. CONCLUSION Dose-dependent progressive pathomorphological changes in histoarchitectonics of the testes are traced, and a decrease in the number of germ cells is seen on the seventh day after irradiation with a pulsed electron accelerator "NOVAC-11".
Collapse
Affiliation(s)
- Grigory Demyashkin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Sergey Koryakin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Aleksandr Moiseev
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Vyatcheslav Saburov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Margarita Zatsepina
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maya Epifanova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Yulia Stepanova
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Shchekin
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Matvey Vadyukhin
- Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Petr Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| | - Andrei Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Sechenov University, 249036 Obninsk, Russia
| |
Collapse
|
8
|
Amer ME, Othman AI, Abozaid HM, El-Missiry MA. Utility of melatonin in mitigating ionizing radiation-induced testis injury through synergistic interdependence of its biological properties. Biol Res 2022; 55:33. [PMID: 36333811 PMCID: PMC9636653 DOI: 10.1186/s40659-022-00401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ionizing radiations (IR) have widespread useful applications in our daily life; however, they have unfavorable effects on reproductive health. Maintaining testicular health following IR exposure is an important requirement for reproductive potential. The current study explored the role of melatonin (MLT) in mitigating IR-induced injury in young adult rat testis. Methods Rats were given daily MLT (25 mg/kg) for 3 and 14 days after receiving 4 Gy γ-radiation. Results Serum MLT levels and other antioxidants, including glutathione content, and the activity of glutathione peroxidase and glutathione reductase in the testis of the irradiated rats were remarkably maintained by MLT administration in irradiated rats. Hence, the hydrogen peroxide level declined with remarkably reduced formation of oxidative stress markers, 4-hydroxynonenal, and 8-Hydroxy-2′-deoxyguanosine in the testis of irradiated animals after MLT administration. The redox status improvement caused a remarkable regression of proapoptotic protein (p53, Cyto-c, and caspase-3) in the testis and improved inflammatory cytokines (CRP and IL-6), and anti-inflammatory cytokine (interleukin IL-10) in serum. This is associated with restoration of disturbed sex hormonal balance, androgen receptor upregulation, and testicular cell proliferation activity in irradiated rats, explaining the improvement of sperm parameters (count, motility, viability, and deformation). Consequently, spermatogenic cell depletion and decreased seminiferous tubule diameter and perimeter were attenuated by MLT treatment post irradiation. Moreover, the testis of irradiated-MLT-treated rats showed well-organized histological architecture and normal sperm morphology. Conclusions These results show that radiation-induced testicular injury is mitigated following IR exposure through synergistic interdependence between the antioxidant, anti-inflammatory, anti-apoptotic, and anti-DNA damage actions of MLT.
Collapse
|
9
|
Lai PP, Jing YT, Guo L, Qin TZ, Xue YZ, Zhang ZW, Wang X, Miao X, Zhang W, Ding GR. Abscopal effects of thoracic X-ray radiation on spermatogenesis in mice. Front Physiol 2022; 13:984429. [PMID: 36091371 PMCID: PMC9458860 DOI: 10.3389/fphys.2022.984429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
The study aimed to elucidate abscopal effects of thoracic X-ray irradiation on spermatogenesis in mice. Male C57BL/6 mice were randomly divided into sham group and radiation group, and subjected to thorax fractionated X-ray irradiation or sham irradiation with the total dose of 5 Gy/day for each animal for four consecutive days. After irradiation, sperm morphology was observed, and sperm number was counted under microscope, and sperm apoptosis was detected by flow cytometry. Meanwhile, testis index was calculated, testicular morphology was observed using haematoxylin-eosin (HE) staining, and testicular ultrastructure was observed under transmission electron microscopy. The permeability of blood-testis barrier (BTB) was detected by Evans Blue fluorescence colorimetry. The protein levels of Bcl-2 associated X protein (Bax), B-cell leukemia-lymphoma-2 (Bcl-2) and Cleaved caspase 3, promyelocytic leukaemia zinc finger (PLZF) and c-kit proto-oncogene (c-kit) in testes were determined by western blotting (WB). The location of apoptotic cells was confirmed by terminal deoxynucleotidyl transferase (TdT) enzymaticated dUTP nick end labelling (TUNEL) assay. The levels of tumor necrosis factor alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) were measured by the biochemical assay kit. Compared with sham group, the sperm quality of mice in radiation group showed decreased number and survival rate, along with increased abnormality and total apoptosis rate. The testis index of irradiated mice was lower, the testicular apoptosis was increased, and their testicular histology and ultrastructure was severely damaged. The permeability of BTB was increased, the level of PLZF in testis was decreased, and the level of c-kit was increased by irradiation. After irradiation, the levels of TNF-α, TGF-β1, IL-10, T-SOD and MDA in testes were significantly changed. Taken together, abscopal effects of thoracic X-ray irradiation on spermatogenesis were obvious, which could decrease sperm quality and damage testicular morphology and increase the permeability of BTB, and a series of inflammation and oxidative stress factors were involved in the process. These findings provide novel insights into prevention and treatment for male reproductive damage induced by clinical thoracic irradiation.
Collapse
Affiliation(s)
- Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Xia Miao
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi’an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi’an, China
- *Correspondence: Gui-Rong Ding,
| |
Collapse
|
10
|
Ameliorative Impact of Silymarin on the Male Reproductive System: An Updated Systematic Review. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Abdel-Aziz N, Haroun RAH, Mohamed HE. Low-Dose Gamma Radiation Modulates Liver and Testis Tissues Response to Acute Whole Body Irradiation. Dose Response 2022; 20:15593258221092365. [PMID: 35444513 PMCID: PMC9014718 DOI: 10.1177/15593258221092365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Aim This work aims to investigate whether the pre-exposure to low dose/low dose rate (40 mGy, 2.2 mGy/hour) γ-radiation as a priming dose can produce a protective effect against the subsequent high one (4 Gy, .425 Gy/minute). Methods Rats were divided into Group I (control), Group II (L); exposed to 40 mGy, Group III (H); exposed to 4 Gy, and Group IV (L+H); exposed to 40 mGy 24 hours before the exposure to 4Gy. The molecular and biochemical changes related to oxidative stress, DNA damage, apoptosis, and mitochondrial activity in the liver and testis were studied 4 hours after irradiation. Results Exposure to 40 mGy before 4 Gy induced a significant increase in the levels of Nrf2, Nrf2 mRNA, TAC, and mitochondrial complexes I & II accompanied by a significant decrease in the levels of LPO, 8-OHdG, DNA fragmentation, TNF-α, caspase-3, and caspase-3 mRNA compared with H group. Conclusion Exposure to low-dose γ-radiation before a high dose provides protective mechanisms that allow the body to survive better after exposure to a subsequent high one via reducing the oxidative stress, DNA damage, and apoptosis-induced early after irradiation. However, further studies are required to identify the long-term effects of this low dose.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Riham A.-H. Haroun
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hebatallah E. Mohamed
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Demyashkin GA, Borovaya TG, Andreeva YY, Nedorubov AA, Stepanova YY, Vadyukhin MA, Shchekin VI, Koryakin SN, Shegay PV, Kaprin AD. An Experimental Approach to Comprehend the Influence of Platelet Rich Growth Factors on Spermatogenesis. Int J Radiat Biol 2022; 98:1330-1343. [PMID: 35259048 DOI: 10.1080/09553002.2022.2047820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leukocyte-poor platelet-rich plasma (LP-PRP) has a potential influence on tissue regeneration by stimulating proliferation and differentiation of progenitor cells.The aim of this work is morphological assessment of spermatogenesis under the influence of growth factors after electron irradiation. MATERIALS AND METHODS Experimental animals (n = 135) were divided into 5 groups: I - control (n = 10); II - 2IR (n = 35; 2 Gy); III - 2IR + LP-PRP + IGF-1 (n = 30); IV - 2IR + LP-PRP (n = 30); V - LP-PRP (n = 30). RESULTS Electron irradiation reduces the number of germ cell in comparison with the control group. After injection of LP-PRP + rhIGF-1 significantly increased the number of germ cells, Sertoli and Leydig cells, height of germinal epithelium, area and diameter of seminiferous tubules. CONCLUSION LP-PRP + rhIGF-1 has a normalizing effect on structural and functional disorders of the testis caused by electron irradiation.
Collapse
Affiliation(s)
- G A Demyashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.F. Tsyba Medical Radiological Research Center - a branch of the Federal State Budgetary Institution "National Medical Research Center of Radiology", Obninsk, Russia
| | - T G Borovaya
- N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A A Nedorubov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Yu Stepanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M A Vadyukhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - V I Shchekin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - S N Koryakin
- A.F. Tsyba Medical Radiological Research Center - a branch of the Federal State Budgetary Institution "National Medical Research Center of Radiology", Obninsk, Russia
| | - P V Shegay
- A.F. Tsyba Medical Radiological Research Center - a branch of the Federal State Budgetary Institution "National Medical Research Center of Radiology", Obninsk, Russia
| | - A D Kaprin
- A.F. Tsyba Medical Radiological Research Center - a branch of the Federal State Budgetary Institution "National Medical Research Center of Radiology", Obninsk, Russia
| |
Collapse
|
13
|
Shen H, Han J, Liu C, Cao F, Huang Y. Grape Seed Proanthocyanidins Exert a Radioprotective Effect on the Testes and Intestines Through Antioxidant Effects and Inhibition of MAPK Signal Pathways. Front Med (Lausanne) 2022; 8:836528. [PMID: 35141259 PMCID: PMC8818786 DOI: 10.3389/fmed.2021.836528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
The testes and intestines are highly sensitive to ionizing radiation. Low-dose radiation can cause infertility and enteritis. However, there is a lack of safe and efficient radioprotective agents. This study aims to investigate the radioprotective effects of grape seed proanthocyanidins (GSPs) on testicular and intestinal damage induced by ionizing radiation. In vitro, GSPs reduced the apoptosis and proliferation inhibition of mouse testicular stromal cells TM3 and human small intestinal crypt epithelial cells HIEC induced by ionizing radiation, and alleviated DNA double-strand breaks. In vivo, GSPs ameliorated the pathological damage of the testes and intestines induced by ionizing radiation, and protected the endocrine function of the testes and the barrier function of the intestines. In addition, we preliminarily proved that the radioprotective effect of GSPs is related to its antioxidant effect and inhibition of MAPK signaling pathways. Our results indicate that GSPs are expected to be a safe and effective radioprotective drug.
Collapse
Affiliation(s)
- Hui Shen
- Department of Central Laboratory, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Han
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunlei Liu
- Department of Radiation Oncology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Fei Cao
- Department of Radiotherapy, Changhai Hospital of Shanghai, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yijuan Huang
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
14
|
Saliev T, Fakhradiyev I, Tanabayeva S, Assanova Y, Toishybek D, Kazybayeva A, Tanabayev B, Sikhymbaev M, Alimbayeva A, Toishibekov Y. "Radio-Protective Effect of Aminocaproic Acid in Human Spermatozoa". Int J Radiat Biol 2022; 98:1462-1472. [PMID: 35021023 DOI: 10.1080/09553002.2022.2027540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The negative effects of ionizing radiation on organs and the reproductive system are well known and documented. Exposure to gamma radiation can lead to oligospermia, azoospermia and DNA damage. Up to date, there is no effective pharmaceutical compound for protecting the male reproductive system and sperm. OBJECTIVE This study aimed at investigating the ability of Ɛ-aminocaproic acid (EACA) to prevent the damage of human spermatozoa and DNA induced by ionizing radiation. MATERIALS AND METHODS Sperm samples were obtained from healthy volunteers (35 men; 31.50 ± 7.34 years old). There were 4 experimental groups: 1) control group (CG), 2) group exposed to maximal radiation dose 67.88 mGy (RMAX), 3) low-dose radiation (minimal) 22.62 mGy (RMIN), and 4) group treated with radiation (67.88 mGy) and EACA (dose 50 ng/ml). Sperm motility, viability, and DNA damage were assessed. RESULTS We observed a significant decrease in total sperm motility of the RMAX group compared to CG (p < 0.05). Sperm viability in the RMAX group was also reduced in comparison to the control (p < 0.05). A significant increase in DNA fragmentation was detected in the RMAX group. The results demonstrated that the treatment of sperm with EACA led to a decrease in the fragmentation of the sperm DNA (compared to the RMAX group) (p < 0.05). CONCLUSION The results indicate that EACA effectively protects human spermatozoa from DNA damage induced by ionizing radiation. Treatment of spermatozoa with EACA led to the preservation of cell motility, viability, and DNA integrity upon radiation exposure.
Collapse
Affiliation(s)
- Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Shynar Tanabayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Yelena Assanova
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan
| | - Dinmukhamed Toishybek
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| | - Aigul Kazybayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.,Clinic of Reproduction and Anti Age, Almaty, Kazakhstan
| | | | - Marat Sikhymbaev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Yerzhan Toishibekov
- F.M. Muhamedgaliev Institute of Experimental Biology, Almaty, Kazakhstan.,Embryo Technology Labs, Almaty, Kazakhstan
| |
Collapse
|
15
|
Semaida AI, El-Khashab MA, Saber AA, Hassan AI, Elfouly SA. Effects of Sargassum virgatum extracts on the testicular measurements, genomic DNA and antioxidant enzymes in irradiated rats. Int J Radiat Biol 2021; 98:191-204. [PMID: 34694945 DOI: 10.1080/09553002.2022.1998702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress and reactive oxygen species (ROS) are primarily responsible for the development of male infertility after exposure to γ-irradiation. The present work aimed to assess the ameliorative and therapeutic roles of the aqueous and ethanolic extracts of the edible seaweed Sargassum virgatum (S. virgatum) on spermatogenesis and infertility in γ-irradiated Wistar rats. MATERIALS AND METHODS Induction of infertility was performed by exposing the rats to 137Cs-gamma rays, using a single dose of 3.5 Gy. γ-irradiated rats were given the S. virgatum ethanolic (S. virgatum-EtOH) and aqueous extracts intraperitoneally on a daily base for two consecutive weeks at doses of 100 and 400 mg/kg body weight (b.wt.) for each seaweed extract. Morphometric data of the testes, semen quality indices, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx), and deoxyribonucleic acid (DNA) fragmentation were assessed. The results obtained were taken during two-time intervals of 15 and 60 days from the commencement of the algal treatments. In vitro antioxidant assays and polyphenolic compounds of S. virgatum were characterized. RESULTS Significant negative changes in the semen quality and morphometric data of the testes, as well as remarkable DNA fragmentation, were detected in the irradiated rats compared to the control. The levels of the endogenous antioxidant enzymes (SOD, CAT, GSH, and GPx) were also significantly diminished. Nonetheless, treatments of γ-irradiated rats with the S. virgatum-EtOH and aqueous extracts significantly improved the above-mentioned enzymes, in addition to noteworthy amendments in the dimensions of the testes, the semen quality, as well as the DNA structure. CONCLUSIONS The ameliorative potency of S. virgatum to cure γ-irradiation-induced male infertility, particularly 400 mg/kg ethanolic extract for 60 days, is the result of the consistent therapeutic interventions of its potent antioxidant and anti-apoptotic polyphenols, particularly protocatechuic, p-hydroxybenzoic, rosmarinic, chlorogenic, cinnamic and gentisic acids, as well as the flavonoids catechin, hesperidin, rutin and quercetin. Besides its high-value nutraceutical importance, S. virgatum could be a natural candidate for developing well-accepted radioprotectant products capable of treating γ-irradiation-induced male infertility.
Collapse
Affiliation(s)
- Ahmed I Semaida
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mona A El-Khashab
- Department of Animal Production (Animal Physiology), Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Abdullah A Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amal I Hassan
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shady A Elfouly
- Department of Radioisotopes, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
16
|
Jiang X, Li X, Feng W, Qin Y, Li Z, Nie H, Qin W, Han L, Bai W. Baking of methionine-choline deficient diet aggravates testis injury in mice. Food Chem Toxicol 2021; 154:112245. [PMID: 33940107 DOI: 10.1016/j.fct.2021.112245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 01/09/2023]
Abstract
Dietary pattern and cooking methods are important factors to determine the nutrients supplementation for male reproduction. Methionine and choline are two methyl donors in daily diet, which could mediate the lipid metabolism, but their effects on the sperms are not clear. In this study, we fed the mice with methionine-choline deficient (MCD) diet or the baked MCD diet for 6 weeks to evaluate this dietary pattern and the appended high temperature cooking on the spermatogenesis. The results have shown that MCD diet induced testis degradation and the damage of spermatocytes, reduced sperm vitality, motility, but elevated sperm deformity. Additionally, baking of MCD diet aggravated the testis injury, further reduced sperm density, sperm motility, and decreased normal sperm morphology dramatically. These changes were not related to the blood-testis barrier nor the Leydig cells dysfunction, but related to spermatocytes lost and apoptosis. The spermatocyte apoptosis was mediated by reticulum stress, including GRP78, XBP-1 and CHOP gene expression. Our study has shown the importance of methionine and choline in diet, and emphasized the crucial role of cooking condition, which are dietary factors to influence the quality of sperms.
Collapse
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xia Li
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wenjun Feng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yige Qin
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen Li
- Department of Clinical Nutrition, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China
| | - Lu Han
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Çeribaşı S, Türk G, Özçelik M, Doğan G, Çeribaşı AO, Mutlu Sİ, Erişir Z, Güvenç M, Güngören G, Acısu TC, Akarsu SA, Kaya ŞÖ, Sönmez M, Yüce A, Çiftçi M, Çambay Z, Bağcı E, Azman MA, Şimşek ÜG. Negative effect of feeding with high energy diets on testes and metabolic blood parameters of male Japanese quails, and positive role of milk thistle seed. Theriogenology 2020; 144:74-81. [PMID: 31927417 DOI: 10.1016/j.theriogenology.2019.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 11/19/2022]
Abstract
In this study, it was aimed to investigate the changes in testicular tissue and cell count, testicular oxidative stress and some metabolic blood parameters of male broiler Japanese quails fed with high energy diet and milk thistle (Silybum marianum) seed. One hundred-twenty male 15-day-old Japanese quail chicks were divided into 4 equal groups with 30 each. The applications in each group were repeated 3 times with 10 animals each. Control group was fed with basal diet. Milk thistle seed group was fed with diet including 1% milk thistle seed. High energy diet group was fed with high energy diet including 10% corn syrup. High energy diet + milk thistle seed group was fed with high energy diet including 10% corn syrup along with 1% milk thistle seed. The feeding period in all groups was 35 days. When the quails reached 50 days old, a total of 48, 12 from each group (4 from each replication) were euthanized and blood samples and testes were collected. Compared with the control group, significant increases in body weight, serum cholesterol and glucose level, aspartate aminotransferase activity and testicular malondialdehyde level; however, significant decreases in serum testosterone level, testicular glutathione peroxidase activity, counts of round and elongated spermatid and sperm as well as histopathologically, significant decreases in seminiferous tubular diameter and seminiferous epithelium thickness, and marked disorganization in germinal cells were determined in quails fed with high energy diet. It was observed that almost all of the disturbances in testicular tissue, cell number, oxidant-antioxidant balance and metabolic blood parameters caused by feeding with high energy diet were significantly prevented by supplementation of milk thistle seed to the diet with high energy. On the other hand, alone milk thistle seed and high energy diet + milk thistle seed administrations decreased body weight in comparison to control and high energy diet groups. As a result, feeding with high energy diet causes disturbances in testes of male quails by affecting liver metabolic functions and testicular oxidant-antioxidant balance, but milk thistle seed addition to diet plays a protective role.
Collapse
Affiliation(s)
- S Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - G Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - M Özçelik
- Department of Medical Services and Technics, High School of Medical Services, Fırat University, Elazığ, Turkey
| | - G Doğan
- Department of Biology, Faculty of Science, Fırat University, Elazığ, Turkey
| | - A O Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - S İflazoğlu Mutlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Z Erişir
- Department of Animal Science, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - M Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - G Güngören
- Department of Animal Science, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - T C Acısu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - S A Akarsu
- Elbistan High School, İstiklal University, Kahramanmaraş, Turkey
| | - Ş Özer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - M Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - A Yüce
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - M Çiftçi
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Z Çambay
- Department of Medical Services and Technics, High School of Medical Services, Fırat University, Elazığ, Turkey
| | - E Bağcı
- Department of Biology, Faculty of Science, Fırat University, Elazığ, Turkey
| | - M A Azman
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ü G Şimşek
- Department of Animal Science, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
18
|
Najafi M, Cheki M, Amini P, Javadi A, Shabeeb D, Eleojo Musa A. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int J Reprod Biomed 2019; 17:907-914. [PMID: 31970312 PMCID: PMC6943799 DOI: 10.18502/ijrm.v17i12.5791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Testis is one of the most sensitive organs against the toxic effect of ionizing radiation. Exposure to even a low dose of radiation during radiotherapy, diagnostic radiology, or a radiological event could pose a threat to spermatogenesis. This may lead to temporary or permanent infertility or even transfer of genomic instability to the next generations. Objective In this study, we evaluated the protective effect of treatment with three natural antioxidants; resveratrol, alpha lipoic acid, and coenzyme Q10 on radiation-induced spermatogenesis injury. Materials and Methods 30 NMRI mice (6-8 wk, 30 ± 5 gr) were randomly divided into six groups (n = 5/each) as 1) control; 2) radiation; 3) radiation + resveratrol; 4) radiation + alpha lipoic acid; 5) radiation + resveratrol + alpha lipoic acid; and 6) radiation+ Q10. Mice were treated with 100 mg/kg resveratrol or 200 mg/kg alpha lipoic acid or a combination of these drugs. Also, Q10 was administered at 200 mg/kg. All treatments were performed daily from two days before to 30 min before irradiation. Afterward, mice were exposed to 2 Gy 60 Co gamma rays; 37 days after irradiation, the testicular samples were collected and evaluated for histopathological parameters. Results Results showed that these agents are able to alleviate some toxicological parameters such as basal lamina and epididymis decreased sperm density. Also, all agents were able to increase Johnsen score. However, they could not protect against radiation-induced edema, atrophy of seminiferous tubules, and hyperplasia in Leydig cells. Conclusion This study indicates that resveratrol, alpha-lipoic acid, and Q10 have the potential to reduce some of the side effects of radiation on mice spermatogenesis. However, they cannot protect Leydig cells as a source of testosterone and seminiferous tubules as the location of sperm maturation.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Cheki
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zarif-Yeganeh M, Rastegarpanah M. Clinical Role of Silymarin in Oxidative Stress and Infertility: A Short Review for Pharmacy Practitioners. J Res Pharm Pract 2019; 8:181-188. [PMID: 31956630 PMCID: PMC6952757 DOI: 10.4103/jrpp.jrpp_18_100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
Silymarin (SMN) as an ancient plant has various therapeutic usage in many diseases. Almost all of its properties attributed to antioxidant and anti-inflammatory properties. Currently, infertility problems impose a heavy burden on many developing countries. As a result, effective infertility treatment is indicated. The role of oxidative stress in both male and female infertility has been revealed. Many studies have shown protective and antioxidative properties of SMN against adverse effects of chemotherapy medications and environmental toxins in sperms and oocytes. The antioxidative and clinical role of SMN in infertility has been reviewed. The use of antioxidants such as SMN can help to improve fertility rate by scavenging free radicals and inhibiting nuclear factor kappa B transcription factor. Animal studies in both male and female have indicated a beneficial effect of SMN on fertility recovery. Further clinical studies are needed considering the phytoestrogenic property of SMN, to determine the right dose and duration of treatment.
Collapse
Affiliation(s)
| | - Mansoor Rastegarpanah
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
A Chinese herbal prescription Yiqi Jiedu decoction attenuates irradiation induced testis injury in mice. Biomed Pharmacother 2019; 123:109804. [PMID: 31884340 DOI: 10.1016/j.biopha.2019.109804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/27/2019] [Accepted: 12/15/2019] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Yiqi Jiedu (YQJD) decoction is a Chinese herbal prescription, based on an experienced expert of traditional Chinese medicine. It is used for the injuries caused by radiotherapy. The current study was designed to investigate the protective effects of YQJD decoction on radiation damage of testis in mice, and to explore its potential mechanisms. METHODS Mice were randomly divided into blank control group (Ctrl), model group (IR), positive drug group (IRA), and YQJD decoction group (IRY). After 10-day period intervention, they were whole-body irradiated with 2 Gy 60Co γ-rays and sacrificed on 7th day after irradiation. The indicators including the index and histopathology examination of testis, spermatogenic cell types and apoptosis, and the expression of TLR5, MyD88, NF-κB, TNF-α, IL-6 and Bcl-2 in testis. RESULTS The testis atrophied significantly on 7th day of exposure to radiation, while YQJD decoction promoted the recovery of testis index and structure. Moreover, spermatogenic cell types and apoptosis had significant changes after irradiation. YQJD decoction protected the testicular function of spermatogenesis, as while as reduced the apoptosis rate of spermatogenic cells. In addition, RT-PCR and immunohistochemical analysis showed that YQJD decoction up-regulated the expression of TLR5 in testis. The levels of TLR5's downstream factors were also up-regulated in YQJD decoction group, which indicated that TLR5 signaling pathway might play an important role in the protective effects of YQJD decoction. CONCLUSIONS The results showed that YQJD decoction attenuated irradiation induced testis injury in mice. Its potential mechanism was related to TLR5 signaling pathway.
Collapse
|
21
|
Differential effect of Taraxacum officinale L. (dandelion) root extract on hepatic and testicular tissues of rats exposed to ionizing radiation. Mol Biol Rep 2019; 46:4893-4907. [DOI: 10.1007/s11033-019-04939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
|
22
|
Ganjalikhan Hakemi S, Sharififar F, Haghpanah T, Babaee A, Eftekhar-Vaghefi SH. The Effects of Olive Leaf Extract on The Testis, Sperm Quality and Testicular Germ Cell Apoptosis in Male Rats Exposed to Busulfan. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:57-65. [PMID: 30644246 PMCID: PMC6334023 DOI: 10.22074/ijfs.2019.5520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022]
Abstract
Background Busulfan (BU) has a destructive effect on the male reproductive system. The goal of this study was to
assess the effects of olive leaf extract (OLE) as a source of antioxidants and phenolic compounds, on BU-induced
damages in rat testes. Materials and Methods In this experimental study, 40 male Wistar rats were randomly divided into 5 groups. The
control group (CTL) received a single intraperitoneal (i.p.) injection of dimethyl sulfoxide (DMSO), followed by
oral administration of distilled water for 5 weeks. In BU group, BU (10 mg/kg) was administrated i.p. once. In co-
treatment groups, first, received BU (10 mg/kg, a single i.p. injection) then, OLE was administrated orally at different
doses of 250 mg/kg (BU+OLE 250), 500 mg/kg (BU+OLE 500) and 750 mg/kg (BU+OLE 750), for 5 weeks. Next,
blood and sperm samples were collected. The left testis was removed to investigate testicular parameters and apop-
tosis by using H&E and TUNEL staining, respectively. All data were analyzed by SPSS software and a P<0.05 was
considered significant. Results There was a significant decline in sperm viability (P=0.017), number of primary spermatocyte (PS) (P=0.001)
and Leydig cells (P=0.023) in the BU group versus the CTL group. OLE at three doses could repair these defects ver-
sus BU group. Increases in apoptotic spermatogonia cells (SG) due to BU were significantly reduced by OLE 250
and 500 mg/kg (P<0.01). A reduction in germinal epithelium height and an increase in apoptotic SG were observed in
BU+OLE 750 group vs. other groups (P<0.01) and alkaline phosphatase (ALP) was at the highest level, also Aspartate
aminotransferase (AST) increased markedly vs. CTL (P=0.024). Conclusion Oral administration of OLE at the doses of 250 and 500 mg/kg could be helpful in ameliorating BU-
induced toxicity in rat testes, while OLE 750 mg/kg not only did not cause positive effects, but also could exacerbate
the harmful effects.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan Hakemi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Electronic Address:
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Clinical Biochemistry, Babol University of Medical Science, Babol, lran.,Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran.Electronic Address:
| |
Collapse
|
23
|
Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:489-495. [PMID: 29232573 DOI: 10.1016/j.jphotobiol.2017.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Free radicals and reactive oxygen species (ROS) are generated using various endogenous systems or from external sources such as exposure to different physiochemicals. Ionizing radiation damage to the cell can be caused by the direct or indirect effects of radiotherapy processes. Silymarin (SM), a flavanolignan compound, has been identified as a natural potent antioxidant with cytoprotection activities due to scavenging free radicals. The aim of the present study was to evaluate the radioprotective effect of SM on sperm parameters of mice induced by γ-rays. A total number of 40 adult, male NMRI mice were randomly divided into four equal groups. The control group was neither treated with SM nor irradiated by γ-rays. The second group was only irradiated with 2Gy of γ-rays. The third group was firstly treated with 50mg/kg of SM for 7 consecutive days, and one day later, last injections were irradiated by 2Gy of γ-rays. The fourth groups received only 50mg/kg of SM for 7 consecutive days. All the animals were treated intraperitoneally. Histopathological and morphometrical examinations were performed. The data were analyzed using ANOVA and Tukey post hoc test. A value of p<0.05 was considered significant. The results showed that in the radiation-only group when compared with those treated with SM and irradiated, a significant different was observed in testicular parameters and DNA damage (p<0.05). In conclusion, SM can be considered as a promising herbal radioprotective agent in complementary medicine which may play an important role to protect normal spermatocytes against possible effects of γ-radiation-induced cellular damage.
Collapse
|