1
|
Englert F, Bahlke F, Erhard N, Krafft H, Popa MA, Risse E, Lennerz C, Lengauer S, Telishevska M, Reents T, Kottmaier M, Kolb C, Hessling G, Deisenhofer I, Bourier F. VT ablation based on CT imaging substrate visualization: results from a large cohort of ischemic and non-ischemic cardiomyopathy patients. Clin Res Cardiol 2024; 113:1478-1484. [PMID: 38112744 PMCID: PMC11420303 DOI: 10.1007/s00392-023-02321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION The eradication of ventricular tachycardia (VT) isthmus sites constitutes the minimal procedural endpoint for VT ablation procedures. Contemporary high-resolution computed tomography (CT) imaging, in combination with computer-assisted analysis and segmentation of CT data, facilitates targeted elimination of VT isthmi. In this context, inHEART offers digitally rendered three-dimensional (3D) cardiac models which allow preoperative planning for VT ablations in ischemic and non-ischemic cardiomyopathies. To date, almost no data have been collected to compare the outcomes of VT ablations utilizing inHEART with those of traditional ablation approaches. METHODS The presented data are derived from a retrospective analysis of n = 108 patients, with one cohort undergoing VT ablation aided by late-enhancement CT and subsequent analysis and segmentation by inHEART, while the other cohort received ablation through conventional methods like substrate mapping and activation mapping. The ablations were executed utilizing a 3D mapping system (Carto3), with the mapping generated via the CARTO® PENTARAY™ NAV catheter and subsequently merged with the inHEART model, if available. RESULTS Results showed more successful outcome of ablations for the inHEART group with lower VT recurrence (27% vs. 42%, p < 0.06). Subsequent analyses revealed that patients with ischemic cardiomyopathies appeared to derive a significant benefit from inHEART-assisted VT ablation procedures, with a higher rate of successful ablation (p = 0.05). CONCLUSION Our findings indicate that inHEART-guided ablation is associated with reduced VT recurrence compared to conventional procedures. This suggests that employing advanced imaging and computational modeling in VT ablation may be valuable for VT recurrences.
Collapse
Affiliation(s)
- F Englert
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - F Bahlke
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - N Erhard
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - H Krafft
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - M-A Popa
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - E Risse
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - C Lennerz
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - S Lengauer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - M Telishevska
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - T Reents
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - M Kottmaier
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - C Kolb
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - G Hessling
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - I Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany
| | - F Bourier
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM), Lazarettstr. 36, 80636, Munich, Germany.
| |
Collapse
|
2
|
Singh AAV, Yoo SJ, Seed M, Lam CZ, Valverde I. Recent advances in multimodal imaging in tetralogy of fallot and double outlet right ventricle. Curr Opin Cardiol 2024; 39:323-330. [PMID: 38652290 DOI: 10.1097/hco.0000000000001154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW In the ever-evolving field of medical imaging, this review highlights significant advancements in preoperative and postoperative imaging for Tetralogy of Fallot (TOF) and double outlet right ventricle (DORV) over the past 18 months. RECENT FINDINGS This review showcases innovations in echocardiography such as 3D speckle tracking echocardiography (3DSTE) for assessing right ventricle-pulmonary artery coupling (RVPAC) and Doppler velocity reconstruction (DoVeR) for intracardiac flow fields evaluation. Furthermore, advances in assessment of cardiovascular anatomy using computed tomography (CT) improve the integration of imaging in ablation procedures. Additionally, the inclusion of cardiac magnetic resonance (CMR) parameters as risk score predictors for morbidity, and mortality and for timing of pulmonary valve replacement (PVR) indicates its significance in clinical management. The utilization of 4D flow techniques for postoperative hemodynamic assessment promises new insights into pressure mapping. Lastly, emerging technologies such as 3D printing and 3D virtual reality are expected to improve image quality and surgical confidence in preoperative planning. SUMMARY Developments in multimodality imaging in TOF and DORV are poised to shape the future of clinical practice in this field.
Collapse
Affiliation(s)
| | - Shi-Joon Yoo
- Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Professor of Medical Imaging and Paediatrics at the University of Toronto
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Professor of Paediatrics at the University of Toronto
| | - Christopher Z Lam
- General Radiology, Department of Diagnostic Imaging, Assistant Professor of Medical Imaging at the University of Toronto
| | - Israel Valverde
- The Hospital for Sick Children, Director of 3D Modeling & Printing Program- Cardiology, Associate Professor of Paediatrics at the University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Dada RS, McGuire JA, Hayanga JWA, Thibault D, Schwartzman D, Ellison M, Hayanga HK. Anesthetic Management for Ventricular Tachycardia Ablation: A National Anesthesia Clinical Outcomes Registry Analysis. J Cardiothorac Vasc Anesth 2024; 38:675-682. [PMID: 38233244 DOI: 10.1053/j.jvca.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVES The authors analyzed anesthetic management trends during ventricular tachycardia (VT) ablation, hypothesizing that (1) monitored anesthesia care (MAC) is more commonly used than general anesthesia (GA); (2) MAC uses significantly increased after release of the 2019 Expert Consensus Statement on Catheter Ablation of Ventricular Arrhythmias; and (3) anesthetic approach varies based on patient and hospital characteristics. DESIGN Retrospective study. SETTING National Anesthesia Clinical Outcomes Registry data. PARTICIPANTS Patients 18 years or older who underwent elective VT ablation between 2013 and 2021. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Covariates were selected a priori within multivariate models, and interrupted time-series analysis was performed. Of the 15,505 patients who underwent VT ablation between 2013 and 2021, 9,790 (63.1%) received GA. After the 2019 Expert Consensus Statement on Catheter Ablation of Ventricular Arrhythmias supported avoidance of GA in idiopathic VT, no statistically significant increase in MAC was evident (immediate change in intercept post-consensus statement release adjusted odds ratio 1.41, p = 0.1629; change in slope post-consensus statement release adjusted odds ratio 1.06 per quarter, p = 0.1591). Multivariate analysis demonstrated that sex, American Society of Anesthesiologists physical status, age, and geographic location were statistically significantly associated with the anesthetic approach. CONCLUSIONS GA has remained the primary anesthetic type for VT ablation despite the 2019 Expert Consensus Statement on Catheter Ablation of Ventricular Arrhythmias suggested its avoidance in idiopathic VT. Achieving widespread clinical practice change is an ongoing challenge in medicine, emphasizing the importance of developing effective implementation strategies to facilitate awareness of guideline release and subsequent adherence to and adoption of recommendations.
Collapse
Affiliation(s)
- Rachel S Dada
- Anesthesiology Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Joseph A McGuire
- Department of Anesthesiology, West Virginia University, Morgantown, WV
| | - J W Awori Hayanga
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WV
| | - Dylan Thibault
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WV
| | - David Schwartzman
- Division of Cardiology, Department of Medicine, West Virginia University, Morgantown, WV
| | - Matthew Ellison
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology, West Virginia University, Morgantown, WV
| | - Heather K Hayanga
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology, West Virginia University, Morgantown, WV.
| |
Collapse
|
4
|
Tonko JB, Sporton S, Sawhney V, Dhinoja M. Mapping the unmappable-Rapid high-density contact mapping in hemodynamically unstable ventricular tachycardia using a novel star-shaped multipolar catheter. HeartRhythm Case Rep 2023; 9:749-754. [PMID: 38047195 PMCID: PMC10691944 DOI: 10.1016/j.hrcr.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Affiliation(s)
- Johanna B. Tonko
- St Bartholomew’s Hospital, London, United Kingdom
- Institute for Cardiovascular Science, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
5
|
Freedman BL, Maher TR, Tracey M, Santangeli P, d'Avila A. Procedural Adaptations to Avoid Haemodynamic Instability During Catheter Ablation of Scar-related Ventricular Tachycardia. Arrhythm Electrophysiol Rev 2023; 12:e20. [PMID: 37465104 PMCID: PMC10350657 DOI: 10.15420/aer.2022.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 07/20/2023] Open
Abstract
Classically, catheter ablation for scar-related ventricular tachycardia (VT) relied upon activation and entrainment mapping of induced VT. Advances in post-MI therapies have led to VTs that are faster and haemodynamically less stable, because of more heterogeneous myocardial fibrosis patterns. The PAINESD score is one means of identifying patients at highest risk for haemodynamic decompensation during attempted VT induction, who may, therefore, benefit from alternative ablation strategies. One strategy is to use temporary mechanical circulatory support, although this warrants formal assessment of cost-effectiveness. A second strategy is to minimise or avoid VT induction altogether by employing a family of 'substrate'-based approaches aimed at identifying VT isthmuses during sinus or paced rhythm. Substrate mapping techniques are diverse, and focus on the timing, morphology and amplitude of local ventricular electrograms - sometimes aided by advanced non-invasive cardiac imaging modalities. In this review, the evolution of VT ablation over time is discussed, with an emphasis on procedural adaptations to the challenge of haemodynamic instability.
Collapse
Affiliation(s)
- Benjamin L Freedman
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Timothy R Maher
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | | | - Pasquale Santangeli
- Cardiovascular Division, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, US
| | - Andre d'Avila
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| |
Collapse
|
6
|
Atreya AR, Yalagudri SD, Subramanian M, Rangaswamy VV, Saggu DK, Narasimhan C. Best Practices for the Catheter Ablation of Ventricular Arrhythmias. Card Electrophysiol Clin 2022; 14:571-607. [PMID: 36396179 DOI: 10.1016/j.ccep.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Techniques for catheter ablation have evolved to effectively treat a range of ventricular arrhythmias. Pre-operative electrocardiographic and cardiac imaging data are very useful in understanding the arrhythmogenic substrate and can guide mapping and ablation. In this review, we focus on best practices for catheter ablation, with emphasis on tailoring ablation strategies, based on the presence or absence of structural heart disease, underlying clinical status, and hemodynamic stability of the ventricular arrhythmia. We discuss steps to make ablation safe and prevent complications, and techniques to improve the efficacy of ablation, including optimal use of electroanatomical mapping algorithms, energy delivery, intracardiac echocardiography, and selective use of mechanical circulatory support.
Collapse
Affiliation(s)
- Auras R Atreya
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India; Division of Cardiovascular Medicine, Electrophysiology Section, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sachin D Yalagudri
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Muthiah Subramanian
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | | | - Daljeet Kaur Saggu
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Calambur Narasimhan
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India.
| |
Collapse
|
7
|
Spectral characterisation of ventricular intracardiac potentials in human post-ischaemic bipolar electrograms. Sci Rep 2022; 12:4782. [PMID: 35314732 PMCID: PMC8938475 DOI: 10.1038/s41598-022-08743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractAbnormal ventricular potentials (AVPs) are frequently referred to as high-frequency deflections in intracardiac electrograms (EGMs). However, no scientific study performed a deep spectral characterisation of AVPs and physiological potentials in real bipolar intracardiac recordings across the entire frequency range imposed by their sampling frequency. In this work, the power contributions of post-ischaemic physiological potentials and AVPs, along with some spectral features, were evaluated in the frequency domain and then statistically compared to highlight specific spectral signatures for these signals. To this end, 450 bipolar EGMs from seven patients affected by post-ischaemic ventricular tachycardia were retrospectively annotated by an experienced cardiologist. Given the high variability of the morphologies observed, three different sub-classes of AVPs and two sub-categories of post-ischaemic physiological potentials were considered. All signals were acquired by the CARTO® 3 system during substrate-guided catheter ablation procedures. Our findings indicated that the main frequency contributions of physiological and pathological post-ischaemic EGMs are found below 320 Hz. Statistical analyses showed that, when biases due to the signal amplitude influence are eliminated, not only physiological potentials show greater contributions below 20 Hz whereas AVPs demonstrate higher spectral contributions above ~ 40 Hz, but several finer differences may be observed between the different AVP types.
Collapse
|
8
|
Stevenson WG, Sapp JL. Newer Methods for VT Ablation and When to Use Them. Can J Cardiol 2021; 38:502-514. [PMID: 34942300 DOI: 10.1016/j.cjca.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Radiofrequency (RF) catheter ablation has long been an important therapy for ventricular tachycardia and frequent symptomatic premature ventricular beats and nonsustained arrhythmias when antiarrhythmic drugs fail to suppress the arrhythmias. It is increasingly used in preference to antiarrhythmic drugs, sparing the patient drug adverse effects. Ablation success varies with the underlying heart disease and type of arrhythmia, being very effective for patients without structural heart disease, less in structural heart disease. Failure occurs when a target for ablation cannot be identified, or ablation lesions fail to reach and abolish the arrhythmia substrate that may be extensive, intramural or subepicardial in location. Approaches to improving ablation lesion creation are modifications to RF ablation and emerging investigational techniques. Easily implemented modifications to RF methods include manipulating the size and location of the cutaneous dispersive electrode, increasing RF delivery duration, and use of lower tonicity catheter irrigation (usually 0.45% saline). When catheters can be placed on either side of culprit substrate RF can be delivered in a bipolar or simultaneous unipolar configuration that can be successful. Catheters with extendable/retractable irrigated needles for RF delivery are under investigation in clinical trials. Cryoablation is potentially useful in specific situations when maintaining contact is difficult. Transvascular ethanol ablation and stereotactic radioablation have both shown promise for arrhythmias that fail other ablation strategies. Although substantial clinical progress has been achieved, further improvement is clearly needed. With ability to increase ablation lesion size, continued careful evaluation of safety, which has been excellent for standard RF ablation, remains important.
Collapse
Affiliation(s)
- William G Stevenson
- The Cardiovascular Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; The Heart Rhythm Service, Department of Medicine, Division of Cardiology, QEII Health Sciences Centre, Halifax, Nova Scotia, Canada.
| | - John L Sapp
- The Cardiovascular Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; The Heart Rhythm Service, Department of Medicine, Division of Cardiology, QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Impact of substrate-based ablation for ventricular tachycardia in patients with frequent appropriate implantable cardioverter-defibrillator therapy and dilated cardiomyopathy: Long-term experience with high-density mapping. Rev Port Cardiol 2021; 40:865-873. [PMID: 34857160 DOI: 10.1016/j.repce.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Recurrent ventricular tachycardia (VT) episodes have a negative impact on the clinical outcome of implantable cardioverter-defibrillator (ICD) patients. Modification of the arrhythmogenic substrate has been used as a promising approach for treating recurrent VTs. However, there are limited data on long-term follow-up. AIM To analyze long-term results of VT substrate-based ablation using high-density mapping in patients with severe left ventricular (LV) dysfunction and recurrent appropriate ICD therapy. METHODS We analyzed 20 patients (15 men, 55% with non-ischemic cardiomyopathy, age 58±15 years, LV ejection fraction 32±5%) and repeated appropriate shocks or arrhythmic storm (>2 shocks/24 h) despite antiarrhythmic drug therapy and optimal heart failure medication. All patients underwent ventricular programmed stimulation (600 ms/S3) to document VT. A sinus rhythm (SR) voltage map was created with a three-dimensional electroanatomic mapping system (CARTO, Biosense Webster, CA) using a PentaRay® high-density mapping catheter (Biosense Webster, CA) to delineate areas of scarred myocardium (ventricular bipolar voltage ≤0.5 mV - dense scar; 0.5-1.5 mV - border zone; ≥1.5 mV - healthy tissue) and to provide high-resolution electrophysiological mapping. Substrate modification included elimination of local abnormal ventricular activities (LAVAs) during SR (fractionated, split, low-amplitude/long-lasting, late potentials, pre-systolic), and linear ablation to obtain scar homogenization and dechanneling. Pace-mapping techniques were used when capture was possible. The LV approach was retrograde in nine cases, transseptal in five and epi-endocardial in four. In two patients ablation was performed inside the right ventricle. RESULTS LAVAs and scar areas were modified in all patients. Mean procedure duration was 149 min (105-220 min), with radiofrequency ranging from 18 to 70 min (mean 33 min) and mean fluoroscopy time of 15 min. Non-inducibility was achieved in 75% of cases (in four patients with hemodynamic deterioration and an LV assist device, VT inducibility was not performed). There were two cases of pericardial tamponade, drained successfully. During a follow-up of 50±24 months, 65% had no VT recurrences. Among the seven patients with recurrences, three underwent redo ablation and four, with fewer VT episodes, received appropriate ICD therapy. There were five hospital readmissions due to heart failure decompensation, one patient died in the first week after unsuccessful ablation of a VT storm and three died (stroke and pneumonia) >1 year after ablation. CONCLUSION Catheter ablation based on substrate modification is feasible and safe in patients with frequent VTs and severe LV dysfunction. This approach may be of clinical relevance, with potential long-term benefits in reducing VT burden.
Collapse
|
10
|
Primo J. Ablation of ventricular arrhythmic substrate: When the whole is more than the sum of its parts. Rev Port Cardiol 2021; 40:875-876. [PMID: 34857161 DOI: 10.1016/j.repce.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- João Primo
- Serviço de Cardiologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.
| |
Collapse
|
11
|
Siedow M, Brownstein J, Prasad RN, Loccoh E, Harfi TT, Okabe T, Tong MS, Afzal MR, Williams T. Cardiac radioablation in the treatment of ventricular tachycardia. Clin Transl Radiat Oncol 2021; 31:71-79. [PMID: 34646951 PMCID: PMC8498093 DOI: 10.1016/j.ctro.2021.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiac radioablation with SBRT is a very promising non-invasive modality for the treatment of refractory VT and potentially other cardiac arrhythmias. Initial reports indicate that it is relatively safe and associated with excellent responses, particularly in reduction of ICD-related events, need for anti-arrhythmic medications, and resulting in significantly improved quality of life for patients. Establishment of objective criteria for candidates for cardiac radioablation will accelerate the adoption of this important radiation therapy modality in the treatment of refractory VT and other cardiac arrhythmias in the coming years. In addition, in order to develop more prospective safety and efficacy data, treatment of patients should ideally be performed in the context of clinical trials or prospective registries at, or in collaboration with, experienced centers. Taken together, the future of cardiac radioablation is rich and worthy of further investigation to become a standard treatment in the armamentarium against refractory VT.
Collapse
Affiliation(s)
- Michael Siedow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeremy Brownstein
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rahul N. Prasad
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Emefah Loccoh
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thura T. Harfi
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Toshimasa Okabe
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Matthew S. Tong
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Muhammad R. Afzal
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
12
|
Oliveira M, Cunha P, Valente B, Portugal G, Lousinha A, Pereira M, Braz M, Delgado A, Ferreira RC. Impact of substrate-based ablation for ventricular tachycardia in patients with frequent appropriate implantable cardioverter-defibrillator therapy and dilated cardiomyopathy: Long-term experience with high-density mapping. Rev Port Cardiol 2021. [DOI: 10.1016/j.repc.2020.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Ablation of ventricular arrhythmic substrate: When the whole is more than the sum of its parts. Rev Port Cardiol 2021. [DOI: 10.1016/j.repc.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Berte B, Zeppenfeld K, Tung R. Impact of Micro-, Mini- and Multi-Electrode Mapping on Ventricular Substrate Characterisation. Arrhythm Electrophysiol Rev 2020; 9:128-135. [PMID: 33240508 PMCID: PMC7675146 DOI: 10.15420/aer.2020.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/23/2020] [Indexed: 12/29/2022] Open
Abstract
Accurate substrate characterisation may improve the evolving understanding and treatment of cardiac arrhythmias. During substrate-based ablation techniques, wide practice variations exist with mapping via dedicated multi-electrode catheter or conventional ablation catheters. Recently, newer ablation catheter technology with embedded mapping electrodes have been introduced. This article focuses on the general misconceptions of voltage mapping and more specific differences in unipolar and bipolar signal morphology, field of view, signal-to-noise ratio, mapping capabilities (density and resolution), catheter-specific voltage thresholds and impact of micro-, mini- and multi-electrodes for substrate mapping. Efficiency and cost-effectiveness of different catheter types are discussed. Increasing sampling density with smaller electrodes allows for higher resolution with a greater likelihood to record near-field electrical information. These advances may help to further improve our mechanistic understanding of the correlation between substrate and ventricular tachycardia, as well as macro-reentry arrhythmia in humans.
Collapse
Affiliation(s)
- Benjamin Berte
- Heart Center, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roderick Tung
- Center for Arrhythmia Care, Pritzker School of Medicine University of Chicago Medicine, Chicago, IL, US
| |
Collapse
|
15
|
Mansour M. Letter from the Editor in Chief. J Innov Card Rhythm Manag 2019; 10:A7. [PMID: 32477723 PMCID: PMC7252763 DOI: 10.19102/icrm.2019.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|