1
|
Jin SR, Cho BG, Mun SB, Kim SJ, Cho CW. Investigation on the adsorption affinity of organic micropollutants on seaweed and its QSAR study. ENVIRONMENTAL RESEARCH 2023:116349. [PMID: 37290627 DOI: 10.1016/j.envres.2023.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Seaweed, one of the most abundant biomaterials, can be used as a biosorbent to remove organic micropollutants. In order to effectively use seaweed to remove a variety of micropollutants, it is vital to rapidly estimate the adsorption affinity according to the types of micropollutants. Thus, the isothermal adsorption affinities of 31 organic micropollutants in neutral or ionic form on seaweed were measured, and a predictive model using quantitative structure-adsorption relationship (QSAR) modeling was developed. As a result, it was found that the types of micropollutants had a significant effect on the adsorption of seaweed, as expected, and QSAR modeling with a predictability (R2) of 0.854 and a standard error (SE) of 0.27 log units using a training set could be developed. The model's predictability was internally and externally validated using leave-one-out cross validation and a test set. Its predictability for the external validation set was R2 = 0.864, SE = 0.171 log units. Using the developed model, we identified the most important driving forces of the adsorption at the molecular level: Coulomb interaction of the anion, molecular volume, and H-bond acceptor and donor, which significantly affect the basic momentum of molecules on the surface of seaweed. Moreover, in silico calculated descriptors were applied to the prediction, and the results revealed reasonable predictability (R2 of 0.944 and SE of 0.17 log units). Our approach provides an understanding of the adsorption process of seaweed for organic micropollutants and an efficient prediction method to estimate the adsorption affinities of seaweed and micropollutants in neutral and ionic forms.
Collapse
Affiliation(s)
- Se-Ra Jin
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Bo-Gyeon Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Se-Been Mun
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| | - Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J CHEM-NY 2021. [DOI: 10.1155/2021/7694157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.
Collapse
|