1
|
Liu J, Si Y, Huang X, Lin X, Lu L, Wu C, Guan X, Liang Y. Vitamin C inhibits NLRP3 inflammasome activation and delays the development of age-related hearing loss in male C57BL/6 mice. Neurosci Lett 2024; 836:137897. [PMID: 39004114 DOI: 10.1016/j.neulet.2024.137897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The efficacy of vitamin C in age-related hearing loss, i.e., presbycusis, remains debatable. On a separate note, inflammation induced by the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is involved in the progression of presbycusis. In this study, we investigated the effect of vitamin C on male C57BL/6 mice's presbycusis and NLRP3 inflammasome. The results showed that vitamin C treatment improved hearing, reduced the production of inflammatory factors, inhibited NLRP3 inflammasome activation, and decreased cytosolic mitochondrial DNA (mtDNA) in the C57BL/6 mouse cochlea, inferior colliculus, and auditory cortex. According to this study, vitamin C protects auditory function in male C57BL/6 presbycusis mice through reducing mtDNA release, inhibiting the NLRP3 inflammasome activation in the auditory pathway. Our study provides a theoretical basis for applying vitamin C to treat presbycusis.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yongfeng Si
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaoying Huang
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinran Lin
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lingjuan Lu
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Changlin Wu
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Guan
- Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunsheng Liang
- Department of Breast Disease, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Zhang P, Zang M, Sang Z, Wei Y, Yan Y, Bian X, Dong S. Vitamin C alleviates LPS-induced myocardial injury by inhibiting pyroptosis via the ROS-AKT/mTOR signalling pathway. BMC Cardiovasc Disord 2022; 22:561. [PMID: 36550401 PMCID: PMC9783737 DOI: 10.1186/s12872-022-03014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The efficacy of vitamin C in sepsis remains controversial. Whether vitamin C can alleviate lipopolysaccharide (LPS)-induced myocardial injury by inhibiting pyroptosis has not been studied. This study aimed to evaluate the effects of vitamin C on LPS-induced myocardial injury in vitro. METHODS H9C2 cells were treated with indicated concentrations of LPS, and the cell viability was then assessed by CCK-8 assay. The levels of lactate dehydrogenase (LDH), CK-MB, IL-18 and IL-1β were examined by enzyme-linked immunosorbent assay (ELISA). The levels of intracellular reactive oxygen species (ROS) were measured using the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA). Western blot assays were conducted to determine the levels of the ROS-associated protein nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) and pyroptosis-associated proteins, such as NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), caspase-1 and gasdermin D (GSDMD). The AKT inhibitor MK-2206 was then applied to explore the signalling pathway. Finally, H9C2 cells were divided into the control group, LPS group, vitamin C + LPS group, and N-acetyl-L-cysteine (NAC) + LPS group. The intracellular ROS, levels of associated proteins, cell viability, and release of LDH, CK-MB, IL-18 and IL-1β were examined. RESULTS LPS decreased cell viability and induced ROS and pyroptosis in H9C2 cells in a dose-dependent manner. Moreover, LPS activated the AKT/mTOR pathway in H9C2 cells. The AKT inhibitor MK-2206 protected H9C2 cells from LPS-induced death by suppressing pyroptosis, without changing intracellular ROS level. Vitamin C significantly inhibited intracellular ROS and cell pyroptosis in LPS-treated H9C2 cells. Moreover, vitamin C suppressed the activation of the AKT/mTOR pathway. CONCLUSIONS Our data suggest that vitamin C alleviates LPS-induced myocardial injury by inhibiting pyroptosis via the ROS-AKT/mTOR signalling pathway and thus provide novel insights into the prevention of sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Pu Zhang
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China ,grid.452209.80000 0004 1799 0194Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Meirong Zang
- grid.452209.80000 0004 1799 0194Department of Haematology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Zhenzhen Sang
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China
| | - Yunxia Wei
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China
| | - Yan Yan
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China
| | - Xiaohua Bian
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China
| | - Shimin Dong
- grid.452209.80000 0004 1799 0194Department of Emergency, The Third Hospital of Hebei Medical University, Zi-Qiang Road No. 139, Shijiazhuang, 050051 Hebei China
| |
Collapse
|
3
|
Kaidow A, Ishii N, Suzuki S, Shiina T, Kasahara H. Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene. Int J Mol Sci 2022; 23:12786. [PMID: 36361576 PMCID: PMC9659236 DOI: 10.3390/ijms232112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome damage combined with defective recombinase activity renders cells inviable, owing to deficient double-strand break repair. Despite this, recA polA cells grow well under either DNA damage response (SOS) conditions or catalase medium supplementation. Catalase treatments reduce intracellular reactive oxygen species (ROS) levels, suggesting that recA polA cells are susceptible to not only chronic chromosome damage but also ROS. In this study, we used a reducing agent, vitamin C, to confirm whether cell growth could be improved. Vitamin C reduced ROS levels and rescued colony formation in recAts polA cells under restrictive temperatures in the presence of hslO, the gene encoding a redox molecular chaperone. Subsequently, we investigated the role of hslO in the cell growth failure of recAts polA cells. The effects of vitamin C were observed in hslO+ cells; simultaneously, cells converged along several ploidies likely through a completion of replication, with the addition of vitamin C at restrictive temperatures. These results suggest that HslO could manage oxidative stress to an acceptable level, allowing for cell division as well as rescuing cell growth. Overall, ROS may regulate several processes, from damage response to cell division. Our results provide a basis for understanding the unsolved regulatory interplay of cellular processes.
Collapse
Affiliation(s)
- Akihiro Kaidow
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
- Hokkaido Regional Research Center, Tokai University, Sapporo 005-8601, Japan
| | - Noriko Ishii
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Hirokazu Kasahara
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| |
Collapse
|
4
|
Vitamin C for sepsis intervention: from redox biochemistry to clinical medicine. Mol Cell Biochem 2021; 476:4449-4460. [PMID: 34478032 PMCID: PMC8413356 DOI: 10.1007/s11010-021-04240-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022]
Abstract
Vitamin C, also known as ascorbic acid or ascorbate, is a water-soluble vitamin synthesized in plants as well as in animals except humans and several other animal species. Humans obtain vitamin C from dietary sources and via vitamin supplementation. Vitamin C possesses important biological functions, including serving as a cofactor for many enzymes, acting as an antioxidant and anti-inflammatory compound, and participating in regulating stem cell biology and epigenetics. The multifunctional nature of vitamin C contributes to its essentialness in maintaining and safeguarding physiological homeostasis, especially regulation of immunity and inflammatory responses. In this context, vitamin C has been investigated for its efficacy in treating diverse inflammatory disorders, including sepsis, one of the major causes of death globally and for which currently there is no cure. Accordingly, this Mini-Review surveys recent major research findings on the effectiveness of vitamin C and the underling molecular mechanisms in sepsis intervention in both experimental animal models and randomized controlled trials. To set a stage for discussing the effects and mechanisms of vitamin C in sepsis intervention, this Mini-Review begins with an overview of vitamin C redox biochemistry and its multifunctional properties.
Collapse
|
5
|
Dahou S, Smahi MCE, Nouari W, Dahmani Z, Benmansour S, Ysmail-Dahlouk L, Miliani M, Yebdri F, Fakir N, Laoufi MY, Chaib-Draa M, Tourabi A, Aribi M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int Immunopharmacol 2021; 95:107476. [PMID: 33676147 DOI: 10.1016/j.intimp.2021.107476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1β in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.
Collapse
Affiliation(s)
- Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Fadela Yebdri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Nassima Fakir
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Yassine Laoufi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mouad Chaib-Draa
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Amina Tourabi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|
6
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
7
|
Causes and Consequences of A Glutamine Induced Normoxic HIF1 Activity for the Tumor Metabolism. Int J Mol Sci 2019; 20:ijms20194742. [PMID: 31554283 PMCID: PMC6802203 DOI: 10.3390/ijms20194742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF1) is the crucial regulator of genes that are involved in metabolism under hypoxic conditions, but information regarding the transcriptional activity of HIF1 in normoxic metabolism is limited. Different tumor cells were treated under normoxic and hypoxic conditions with various drugs that affect cellular metabolism. HIF1α was silenced by siRNA in normoxic/hypoxic tumor cells, before RNA sequencing and bioinformatics analyses were performed while using the breast cancer cell line MDA-MB-231 as a model. Differentially expressed genes were further analyzed and validated by qPCR, while the activity of the metabolites was determined by enzyme assays. Under normoxic conditions, HIF1 activity was significantly increased by (i) glutamine metabolism, which was associated with the release of ammonium, and it was decreased by (ii) acetylation via acetyl CoA synthetase (ACSS2) or ATP citrate lyase (ACLY), respectively, and (iii) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, acetylsalicylic acid, ibuprofen, L-ascorbic acid, and citrate each significantly destabilized HIF1α only under normoxia. The results from the deep sequence analyses indicated that, in HIF1-siRNA silenced MDA-MB-231 cells, 231 genes under normoxia and 1384 genes under hypoxia were transcriptionally significant deregulated in a HIF1-dependent manner. Focusing on glycolysis genes, it was confirmed that HIF1 significantly regulated six normoxic and 16 hypoxic glycolysis-associated gene transcripts. However, the results from the targeted metabolome analyses revealed that HIF1 activity affected neither the consumption of glucose nor the release of ammonium or lactate; however, it significantly inhibited the release of the amino acid alanine. This study comprehensively investigated, for the first time, how normoxic HIF1 is stabilized, and it analyzed the possible function of normoxic HIF1 in the transcriptome and metabolic processes of tumor cells in a breast cancer cell model. Furthermore, these data imply that HIF1 compensates for the metabolic outcomes of glutaminolysis and, subsequently, the Warburg effect might be a direct consequence of the altered amino acid metabolism in tumor cells.
Collapse
|
8
|
Abstract
Over the past century, the notion that vitamin C can be used to treat cancer has generated much controversy. However, new knowledge regarding the pharmacokinetic properties of vitamin C and recent high-profile preclinical studies have revived interest in the utilization of high-dose vitamin C for cancer treatment. Studies have shown that pharmacological vitamin C targets many of the mechanisms that cancer cells utilize for their survival and growth. In this Opinion article, we discuss how vitamin C can target three vulnerabilities many cancer cells share: redox imbalance, epigenetic reprogramming and oxygen-sensing regulation. Although the mechanisms and predictive biomarkers that we discuss need to be validated in well-controlled clinical trials, these new discoveries regarding the anticancer properties of vitamin C are promising to help identify patient populations that may benefit the most from high-dose vitamin C therapy, developing effective combination strategies and improving the overall design of future vitamin C clinical trials for various types of cancer.
Collapse
Affiliation(s)
- Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin M Van Riper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jihye Yun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
10
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
11
|
Zhu H, Jia Z, Trush MA, Li YR. Nrf2 Deficiency Promotes Melanoma Growth and Lung Metastasis. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:308-314. [PMID: 29721548 PMCID: PMC5926243 DOI: 10.20455/ros.2016.853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The role of Nrf2, a key regulator of antioxidant and cytoprotective genes, in tumorigenesis remains controversial. Here we showed that Nrf2 deficiency led to increased local tumor growth in mice following subcutaneous injection of B16-F10 melanoma cells, as indicated by increased proportion of animals with locally palpable tumor mass and time-dependent increases in tumor volume at the injection site. In vivo bioluminescence imaging also revealed increased growth of melanoma in Nrf2-null mice as compared with wild-type mice. By using a highly sensitive bioluminometric assay, we further found that Nrf2 deficiency resulted in a remarkable increase in lung metastasis of B16-F10 melanoma cells as compared with wild-type mice. Taken together, the results of this short communication for the first time demonstrated that Nrf2 deficiency promoted melanoma growth and lung metastasis following subcutaneous inoculation of B16-F10 cells in mice.
Collapse
Affiliation(s)
- Hong Zhu
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Y Robert Li
- Campbell University Jerry M. Wallace School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|