1
|
Spasov AA, Zhukovskaya ON, Rashchenko AI, Brigadirova AA, Litvinov RA, Gurova NA, Smirnov AV, Pan’shin NG, Abbas HS, Morkovnik AS. DF-5 COMPOUND DELAYS DEVELOPMENT OF DIABETIC NEPHROPATHY IN RATS. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-549-561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Advanced glycation end-products play an important role in the development of diabetic complications, so slowing down of glycated proteins’ cross-links formation have been suggested as a potential therapeutic option for the treatment of vascular diabetic complications and preventing their progression.The aim of the work was to assess the influence of novel anticrosslinking agent DF-5 on the renal advanced glycation end-products and collagen contents, body weight, blood glucose and glycated hemoglobin levels and the development of early renal disease in streptozotocin-induced diabetic rats.Materials and methods. 40 male Sprague-Dawley rats were used in the study. Two months after inducing diabetes, the study substance was administered intragastrically once a day for 28 days (12.5 mg/kg). Measurements included the assessment of blood glucose and HbA1c levels, the evaluation of the renal function, and the results of histology and immunohistochemical staining of kidneys.Results. A repeated intragastric administration of DF-5 for 30 days significantly reduced the level of HbA1c in the blood, but did not affect the level of fasting blood glucose. DF-5 compound significantly reduced proteinuria and prevented kidney damage in experimental animals by limiting damage of the glomeruli and tubules. It was found that DF-5 inhibits the progression of an early renal dysfunction in rats with streptozotocin-induced diabetic nephropathy. This was associated with a decreased accumulation of advanced glycation end-products in the kidney, accompanied by the improvement of both renal morphology and function.Conclusion. The results obtained provide investigators with additional therapeutic options for the treatment of diabetic nephropathy and possibly other complications of diabetes.
Collapse
Affiliation(s)
- A. A. Spasov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | - O. N. Zhukovskaya
- Institute of Physical and Organic Chemistry, Southern Federal University
| | | | - A. A. Brigadirova
- Volgograd State Medical University;
Volgograd Medical Research Center
| | - R. A. Litvinov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | | | - A. V. Smirnov
- Volgograd State Medical University;
Volgograd Medical Research Center
| | | | - H. S.A. Abbas
- Institute of Physical and Organic Chemistry, Southern Federal University
| | - A. S. Morkovnik
- Institute of Physical and Organic Chemistry, Southern Federal University
| |
Collapse
|
2
|
Jung E, Pyo MK, Kim J. Pectin-Lyase-Modified Ginseng Extract and Ginsenoside Rd Inhibits High Glucose-Induced ROS Production in Mesangial Cells and Prevents Renal Dysfunction in db/db Mice. Molecules 2021; 26:molecules26020367. [PMID: 33445772 PMCID: PMC7828230 DOI: 10.3390/molecules26020367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes increases the incidence rate of chronic renal disease. Pectin-lyase-modified ginseng (GS-E3D), with enhanced ginsenoside Rd content, has been newly developed. In this study, renal protective roles of GS-E3D in type-2 diabetic db/db mice were investigated. The generation of reactive oxygen species (ROS) induced by high glucose (25 mM) was reduced by ES-E3D (75%) and ginsenoside Rd (60%). Diabetic db/db mice received 100 or 250 mg/kg/day of GS-E3D daily via oral gavage for 6 weeks. Albuminuria and urinary 8-hydroxy-2'-deoxyguanosine (8-OhdG, an oxidative stress marker) levels were increased in db/db mice and the levels recovered after GS-E3D treatment. In renal tissues, TUNEL-positive cells were decreased after GS-E3D treatment, and the increased apoptosis-related protein expressions were restored after GS-E3D treatment. Therefore, GS-E3D has a potent protective role in diabetes-induced renal dysfunction through antioxidative and antiapoptotic activities. These results may help patients to select a dietary supplement for diabetes when experiencing renal dysfunction.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea;
| | - Mi-kyung Pyo
- International Ginseng and Herb Research Institute, 25 Insamgwangjang-ro, Geumsan-eup, Geumsan-gun 32724, Chungcheongnam-do, Korea;
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
- Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: ; Tel.: +82-63-270-4032; Fax: +82-63-270-4025
| |
Collapse
|
3
|
Kim GW, Pyo MK, Chung SH. Pectin lyase-modified red ginseng extract improves glucose homeostasis in high fat diet-fed mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112384. [PMID: 31733309 DOI: 10.1016/j.jep.2019.112384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red ginseng has long been used as a traditional folk medicine for various diseases including diabetes. Recently, a preparation of red ginseng extract by pectin lyase modification has been developed and named as GS-E3D. AIM OF THE STUDY The aim of this study is to evaluate the preventive effect of GS-E3D on hyperglycemia induced by feeding a high fat diet (HFD) in mice. MATERIALS AND METHODS GS-E3D was orally administered to C57BL/6J mice at different doses (250, 500, or 1000 mg/kg/day) for 6 weeks while on a HFD. Body weight and blood glucose were monitored weekly, and oral glucose tolerance test (OGTT) was performed at 5th week of the experiment. Glycemic indications and metabolic parameters were further measured in serum. RESULTS Six weeks of GS-E3D treatment to mice significantly inhibited HFD-induced body weight gain, hyperglycemia, hyperinsulinemia and hypertriglyceridemia. Notably, GS-E3D treated mice at doses of 250, 500 and 1000 mg/kg showed 41.8%, 45.0% and 55.1% reduction in insulin resistance index, respectively, compared to HFD control mice. OGTT revealed that GS-E3D markedly prevented steep rise of blood glucose and insulin levels after glucose challenge and ameliorated HFD-induced glucose and insulin intolerance. The histological analysis showed enlarged adipocytes in HFD-fed mice whereas the adipocyte hypertrophy was prevented in GS-E3D treated mice in a dose-dependent manner. Furthermore, when peripheral glucose uptake level was assessed by total and membranous glucose transporter type 4 (GLUT4) protein contents, GS-E3D restored GLUT4 protein expression to the levels of regular diet fed mice, and dose-dependently translocated them to the plasma membrane. CONCLUSION The results collectively show that GS-E3D ameliorates obesity-related impaired glucose tolerance by improving insulin sensitivity in the epidydimal adipose tissue.
Collapse
Affiliation(s)
- Go Woon Kim
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| | - Mi-Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, Republic of Korea.
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Jung E, Kim CS, Jung W, Park SB, Pyo MK, Kim J. Ginseng Extract Modified by Pectin Lyase Inhibits Retinal Vascular Injury and Blood-Retinal Barrier Breakage in a Rat Model of Diabetes. J Med Food 2019; 22:337-343. [PMID: 30785359 DOI: 10.1089/jmf.2018.4256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
GS-E3D is an enzymatically modified ginseng extract by pectin lyase. In this study, we evaluated the preventive effects of GS-E3D on blood-retinal barrier (BRB) leakage in a rat model of diabetes. To produce diabetes, rats were injected with streptozotocin. GS-E3D was orally gavaged at 25, 50, and 100 mg/kg body weight for 6 weeks. We then compared the effect of GS-E3D with that of an unmodified ginseng extract (UGE) on retinal vascular leakage. The administration of GS-E3D significantly blocked diabetes-induced BRB breakdown. Immunofluorescence staining showed that GS-E3D reduced the loss of occludin in diabetic rats. In TUNEL staining, the number of apoptotic retinal microvascular cells was dose dependently decreased by GS-E3D treatment. GS-E3D decreased the accumulations of advanced glycation end products in the retinal vessels. In addition, the inhibition potential of GS-E3D on BRB breakage was stronger compared with UGE. These results indicate that GS-E3D could be a beneficial treatment option for preventing diabetes-induced retinal vascular injury.
Collapse
Affiliation(s)
- Eunsoo Jung
- 1 Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chan-Sik Kim
- 2 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Wookwon Jung
- 3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Su-Bin Park
- 3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Mi-Kyung Pyo
- 4 International Ginseng and Herb Research Institute, Geumsan, South Korea
| | - Junghyun Kim
- 2 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,3 Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
5
|
Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M. Phytotherapy in the Management of Diabetes: A Review. Molecules 2018; 23:E105. [PMID: 29300317 PMCID: PMC6017385 DOI: 10.3390/molecules23010105] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023] Open
Abstract
Phytotherapy has long been a source of medicinal products and over the years there have been many attempts to use herbal medicines for the treatment of diabetes. Several medicinal plants and their preparations have been demonstrated to act at key points of glucidic metabolism. The most common mechanisms of action found include the inhibition of α-glucosidase and of AGE formation, the increase of GLUT-4 and PPARs expression and antioxidant activity. Despite the large amount of literature available, the actual clinical effectiveness of medicinal plants in controlling diabetes-related symptoms remains controversial and there is a crucial need for stronger evidence-based data. In this review, an overview of the medicinal plants, which use in the management of diabetes is supported by authoritative monographs, is provided. References to some species which are currently under increasing clinical investigation are also reported.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Vittoria Borgonetti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Giulia Cettolin
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Daniela Giachetti
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Anna Rosa Magnano
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy.
- Italian Society of Phytotherapy, Via Laterina 8, 53100 Siena, Italy.
| |
Collapse
|