1
|
Isas AS, Balcells MF, Maldonado Galdeano C, Palomo I, Rodriguez L, Fuentes E, Luna Pizarro P, Mateos Briz R, Mozzi F, Van Nieuwenhove C. Fermented pomegranate juice enriched with pomegranate seed oil ameliorates metabolic disorders associated with a high-fat diet in C57BL/6 mice. Food Chem 2025; 463:141434. [PMID: 39348771 DOI: 10.1016/j.foodchem.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
This study investigated the health-functional properties of a lactic fermented pomegranate juice (FPJ) enriched with pomegranate seed oil (FPJO) by using the fruit-origin strain Lactiplantibacillus paraplantarum CRL 2051 (FPJO-CRL2051). For this aim, the in vitro human antiplatelet aggregation effect and antioxidant activities were determined in the fermented juices while in vivo studies using high-fat-diet (HFD) C57BL/6 mice fed with a high-fat diet or pomegranate fermented juices for 8 weeks were performed. A high anti-platelet aggregation activity for FPJO-CRL2051 was determined. The formulated juice was administered to C57BL/6 HFD mice over 8 weeks, which showed a significant decrease in triglycerides, LDL-C, and pro-inflammatory cytokines levels. The FPJO-CRL2051 administration was effective in ameliorating liver damage caused by HFD, reducing fat accumulation and oxidative biomarkers, and improving the liver fatty acid profile by incorporation of conjugated fatty acids. This study shows the significance of lactic fermentation in developing novel fermented plant-based beverages with enhanced functional activities with a circular economy approach for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Ana Sofía Isas
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - María Florencia Balcells
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Lyanne Rodriguez
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile
| | - Patricia Luna Pizarro
- Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina
| | - Raquel Mateos Briz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN)-CSIC, Departamento de Metabolismo y Nutrición, José Antonio Novais 10, Madrid, 28040, Spain
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Carina Van Nieuwenhove
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán, 4000, Tucumán, Argentina; Instituto de Morfología Animal- Área Zoología, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
2
|
Zhu Q, Li G, Ma L, Chen B, Zhang D, Gao J, Deng S, Chen Y. Virgin Camellia Seed Oil Improves Glycolipid Metabolism in the Kidney of High Fat-Fed Rats through AMPK-SREBP Pathway. Nutrients 2023; 15:4888. [PMID: 38068746 PMCID: PMC10708295 DOI: 10.3390/nu15234888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.
Collapse
Affiliation(s)
- Qinhe Zhu
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guihui Li
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Li Ma
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| | - Bolin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Zhang
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Gao
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| | - Senwen Deng
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yongzhong Chen
- National Engineering Research Center of Oiltea Camellia, State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (Q.Z.); (G.L.); (L.M.); (D.Z.)
| |
Collapse
|