1
|
Jia X, Liao N, Yao Y, Guo X, Chen K, Shi P. Dynamic evolution of bone marrow adipocyte in B cell acute lymphoblastic leukemia: insights from diagnosis to post-chemotherapy. Cancer Biol Ther 2024; 25:2323765. [PMID: 38465622 PMCID: PMC10936623 DOI: 10.1080/15384047.2024.2323765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Adipocyte is a unique and versatile component of bone marrow microenvironment (BMM). However, the dynamic evolution of Bone Marrow (BM) adipocytes from the diagnosis of B cell Acute Lymphoblastic Leukemia (B-ALL) to the post-treatment state, and how they affect the progression of leukemia, remains inadequately explicated. Primary patient-derived xenograft models (PDXs) and stromal cell co-culture system are employed in this study. We show that the dynamic evolution of BM adipocytes from initial diagnosis of B-ALL to the post-chemotherapy phase, transitioning from cellular depletion in the initial leukemia niche to a fully restored state upon remission. Increased BM adipocytes retards engraftment of B-ALL cells in PDX models and inhibits cells growth of B-ALL in vitro. Mechanistically, the proliferation arrest of B-ALL cells in the context of adipocytes-enrichment niche, might attribute to the presence of adiponectin secreted by adipocytes themselves and the absence of cytokines secreted by mesenchymal stem cell (MSCs). In summary, our findings offer a novel perspective for further in-depth understanding of the dynamic balance between BMM and B-ALL.
Collapse
Affiliation(s)
- Xi Jia
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Naying Liao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yunqian Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xutao Guo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Kai Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Zhang L, Liu X, Zhou S, Wang P, Zhang X. Glycolysis Modulation by METTL7B Shapes Acute Lymphoblastic Leukemia Cell Proliferation and Chemotherapy Response. Hum Cell 2024; 37:478-490. [PMID: 38294636 DOI: 10.1007/s13577-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a devastating hematological malignancy characterized by uncontrolled proliferation of immature lymphoid cells. While advances in treatment have improved patient outcomes, challenges remain in enhancing therapeutic efficacy and understanding underlying molecular mechanisms. Methyltransferase-like 7B (METTL7B), known for its methyltransferase activity, has been implicated in various solid tumors, yet its role in ALL remains unexplored. Here, we reveal that high METTL7B expression is correlated with poorer prognosis in ALL patients. Employing genetic manipulation strategies, we demonstrate that METTL7B depletion reduces ALL cell proliferation and enhances chemosensitivity. Mechanistically, we uncover METTL7B's involvement in modulating glycolysis, a crucial metabolic pathway supporting ALL cell growth. Furthermore, METTL7B's methyltransferase activity is identified as a determinant of its impact on glycolysis and proliferation. This study sheds light on METTL7B's multifaceted role in ALL, highlighting its potential as a therapeutic target and offering insights into the metabolic rewiring crucial for ALL progression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Xiao Liu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shuai Zhou
- Department of Human Anatomy, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Peng Wang
- Department of Critical Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xuan Zhang
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Pan C, Hu T, Liu P, Ma D, Cao S, Shang Q, Zhang L, Chen Q, Fang Q, Wang J. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6. J Transl Med 2023; 21:593. [PMID: 37670388 PMCID: PMC10478283 DOI: 10.1186/s12967-023-04464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a supportive environment responsible for promoting the growth and proliferation of tumor cells. Current studies have revealed that the bone marrow mesenchymal stem cells (BM-MSCs), a type of crucial stromal cells in the TME, can promote the malignant progression of tumors. However, in the adult B-cell acute lymphoblastic leukemia (B-ALL) microenvironment, it is still uncertain what changes in BM-MSCs are induced by leukemia cells. METHODS In this study, we mimicked the leukemia microenvironment by constructing a BM-MSC-leukemia cell co-culture system. In vitro cell experiments, in vivo mouse model experiments, lentiviral transfection and transcriptome sequencing analysis were used to investigate the possible change of BM-MSCs in the leukemia niche and the potential factors in BM-MSCs that promote the progression of leukemia. RESULTS In the leukemia niche, the leukemia cells reduced the MSCs' capacity to differentiate towards adipogenic and osteogenic subtypes, which also promoted the senescence and cell cycle arrest of the MSCs. Meanwhile, compared to the mono-cultured MSCs, the gene expression profiles of MSCs in the leukemia niche changed significantly. These differential genes were enriched for cell cycle, cell differentiation, DNA replication, as well as some tumor-promoting biofunctions including protein phosphorylation, cell migration and angiogenesis. Further, interferon alpha-inducible protein 6 (IFI6), as a gene activated by interferon, was highly expressed in leukemia niche MSCs. The leukemia cell multiplication was facilitated evidently by IFI6 both in vitro and in vivo. Mechanistically, IFI6 might promote leukemia cell proliferation by stimulating SDF-1/CXCR4 axis, which leads to the initiation of downstream ERK signaling pathway. As suggested by further RNA sequencing analysis, the high IFI6 level in MSCs somewhat influenced the gene expression profile and biological functions of leukemia cells. CONCLUSIONS BM-MSCs in the leukemia niche have varying degrees of changes in biological characteristics and gene expression profiles. Overexpression of IFI6 in BM-MSCs could be a key factor in promoting the proliferation of B-ALL cells, and this effect might be exerted through the SDF-1/CXCR4/ERK signal stimulation. Targeting IFI6 or related signaling pathways might be an important measure to reduce the leukemia cell proliferation.
Collapse
Affiliation(s)
- Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Tianzhen Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Shuyun Cao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Shang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qingzhen Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China.
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China.
- Hematological Institute of Guizhou Province, Guizhou, China.
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China.
| |
Collapse
|
5
|
Alquezar-Artieda N, Kuzilkova D, Roberts J, Hlozkova K, Pecinova A, Pecina P, Zwyrtkova M, Potuckova E, Kavan D, Hermanova I, Zaliova M, Novak P, Mracek T, Sramkova L, Tennant DA, Trka J, Starkova J. Restored biosynthetic pathways induced by MSCs serve as rescue mechanism in leukemia cells after L-asparaginase therapy. Blood Adv 2023; 7:2228-2236. [PMID: 36399517 PMCID: PMC10196988 DOI: 10.1182/bloodadvances.2021006431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Alena Pecinova
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Petr Pecina
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Eliska Potuckova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Ivana Hermanova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Petr Novak
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Tomas Mracek
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Lucie Sramkova
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|