1
|
Shi S, Ye L, Jin K, Yu X, Guo D, Wu W. The complement C3a/C3aR pathway is associated with treatment resistance to gemcitabine-based neoadjuvant therapy in pancreatic cancer. Comput Struct Biotechnol J 2024; 23:3634-3650. [PMID: 39469671 PMCID: PMC11513484 DOI: 10.1016/j.csbj.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Gemcitabine is a standard first-line drug for pancreatic cancer chemotherapy. Nevertheless, gemcitabine resistance is common and significantly limits its therapeutic efficacy, impeding advancements in pancreatic cancer treatment. In this study, through a comprehensive analysis of gemcitabine-resistant cell lines and patient samples, 39 gemcitabine resistance-associated risk genes were identified, and two distinct gemcitabine response-related phenotypes were delineated. Through a combination of bioinformatics analysis and in vivo and in vitro experiments, we identified the C3a/C3aR signaling pathway as a pivotal player in the development of gemcitabine resistance in pancreatic cancer. We found that activation of the C3a/C3aR signaling pathway promoted the proliferation, migration and gemcitabine resistance of pancreatic cancer cells, while the C3aR antagonist SB290157 effectively counteracted these effects by impeding the activation of the C3a/C3aR pathway. Our study reveals the fundamental role of complement C3a in the progression of pancreatic cancer, suggesting that complement C3a may serve as a promising biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Brayer KJ, Hanson JA, Cingam S, Martinez C, Ness SA, Rabinowitz I. The immune response to a fungus in pancreatic cancer samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534606. [PMID: 37034706 PMCID: PMC10081247 DOI: 10.1101/2023.03.28.534606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a poor prognosis cancer with an .aggressive growth profile that is often diagnosed at late stage and that has few curative or therapeutic options. PDAC growth has been linked to alterations in the pancreas microbiome, which could include the presence of the fungus Malassezia. We used RNA-sequencing to compare 14 paired tumor and normal (tumor adjacent) pancreatic cancer samples and found Malassezia RNA in both the PDAC and normal tissues. Although the presence of Malassezia was not correlated with tumor growth, a set of immune- and inflammatory-related genes were up-regulated in the PDAC compared to the normal samples, suggesting that they are involved in tumor progression. Gene set enrichment analysis suggests that activation of the complement cascade pathway and inflammation could be involved in pro PDAC growth.
Collapse
Affiliation(s)
- KJ Brayer
- Department of Internal Medicine / Molecular Medicine, University of New Mexico, Albuquerque, NM
| | - JA Hanson
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - S Cingam
- Department of Internal Medicine/ Division of Hematology- Oncology, University of New Mexico, Albuquerque, NM
| | - C Martinez
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - SA Ness
- Department of Internal Medicine / Molecular Medicine, University of New Mexico, Albuquerque, NM
| | - I Rabinowitz
- Department of Internal Medicine/ Division of Hematology- Oncology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
4
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|