1
|
Luo D, Zhu H, Li S, Wang Z, Xiao J. Mesenchymal stem cell-derived exosomes as a promising cell-free therapy for knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1309946. [PMID: 38292826 PMCID: PMC10824863 DOI: 10.3389/fbioe.2024.1309946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA), as a degenerative disease, leads to high socioeconomic burdens and disability rates. The knee joint is typically the most affected and is characterized by progressive destruction of articular cartilage, subchondral bone remodeling, osteophyte formation and synovial inflammation. The current management of OA mainly focuses on symptomatic relief and does not help to slow down the advancement of disease. Recently, mesenchymal stem cells (MSCs) and their exosomes have garnered significant attention in regenerative therapy and tissue engineering areas. Preclinical studies have demonstrated that MSC-derived exosomes (MSC-Exos), as bioactive factor carriers, have promising results in cell-free therapy of OA. This study reviewed the application of various MSC-Exos for the OA treatment, along with exploring the potential underlying mechanisms. Moreover, current strategies and future perspectives for the utilization of engineered MSC-Exos, alongside their associated challenges, were also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Kang C, He H, Liu P, Liu Y, Li X, Zhang J, Ran H, Zeng X, Zhao H, Liu J, Qiu S. Role of dendritic cell‑derived exosomes in allergic rhinitis (Review). Int J Mol Med 2023; 52:117. [PMID: 37888754 PMCID: PMC10635688 DOI: 10.3892/ijmm.2023.5320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell‑derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC‑derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti‑allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.
Collapse
Affiliation(s)
- Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Haipeng He
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otorhinolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Hailiang Zhao
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jiangqi Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
4
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
5
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
6
|
Yan C, Zhang J, An F, Wang J, Shi Y, Yuan L, Lv D, Zhao Y, Wang Y. Research Progress of Ferroptosis Regulatory Network and Bone Remodeling in Osteoporosis. Front Public Health 2022; 10:910675. [PMID: 35844870 PMCID: PMC9280046 DOI: 10.3389/fpubh.2022.910675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis was induced the programmed cell death with iron overload Fenton reaction. Currently, ferroptosis has not been studied thoroughly. Existing studies have confirmed that ferroptosis involves the metabolisms of the Fe, lipids, amino acid, each mechanism is mutually independent but interrelated, and they are formed a complex regulatory network. Other evidence supports that ferroptosis is participated osteoporotic bone remodeling, predominantly affecting the interaction between bone formation and bone resorption, explicitly bone resorption exceeded bone formation. Based on previous studies, this review will summarize the regulatory network mechanism of ferroptosis on bone remodeling and reveal the role of ferroptosis in osteoporosis (OP).
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinlong Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayu Wang
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yao Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Donghui Lv
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanzhen Zhao
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongfeng Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Paris JL, de la Torre P, Flores AI. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021; 13:pharmaceutics13122149. [PMID: 34959429 PMCID: PMC8707403 DOI: 10.3390/pharmaceutics13122149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Allergy constitutes a major health issue due to its large prevalence. The established therapeutic approaches (allergen avoidance, antihistamines, and corticosteroids) do not address the underlying causes of the pathology, highlighting the need for other long-term treatment options. Antigen-specific immunotherapy enables the long-term control of allergic diseases by promoting immunological tolerance to the allergen. However, efficacious immunotherapies are not available for all possible allergens, and the risk of undesired reactions during therapy remains a concern, especially in patients with severe allergic reactions. In this context, two types of therapeutic strategies appear especially promising for the future in the context of allergy: cell therapy and bio- or nano-material-based therapy. In this review, the main strategies developed this far in these two types of strategies are discussed, with several examples illustrating the different approaches.
Collapse
Affiliation(s)
- Juan L. Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|