1
|
Almeida B, Dias TR, Cruz P, Sousa-Pimenta M, Teixeira AL, Pereira CE, Costa-Silva B, Oliveira J, Medeiros R, Dias F. Plasma EV-miRNAs as Potential Biomarkers of COVID-19 Vaccine Immune Response in Cancer Patients. Vaccines (Basel) 2024; 12:848. [PMID: 39203974 PMCID: PMC11359428 DOI: 10.3390/vaccines12080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer patients, prone to severe COVID-19, face immune challenges due to their disease and treatments. Identifying biomarkers, particularly extracellular vesicle (EV)-derived microRNAs (miRNAs), is vital for comprehending their response to COVID-19 vaccination. Therefore, this study aimed to investigate specific EV-miRNAs in the plasma of cancer patients under active treatment who received the COVID-19 booster vaccine. The selected miRNAs (EV-hsa-miR-7-5p, EV-hsa-miR-15b-5p, EV-hsa-miR-24-3p, EV-hsa-miR-145- 5p, and EV-hsa-miR-223-3p) are involved in regulating SARS-CoV-2 spike protein and cytokine release, making them potential biomarkers for vaccination response. The study involved 54 cancer patients. Plasma and serum samples were collected at pre-boost vaccination, and at 3 and 6 months post-boost vaccination. Anti-spike antibody levels were measured. Additionally, RNA was extracted from EVs isolated from plasma and the expression levels of miRNAs were assessed. The results showed a significantly positive antibody response after COVID-19 boost vaccination. The expression levels of EV-hsa-miR-7-5p, EV-hsa-miR-15b-5p, EV-hsa-miR-24-3p, and EV-hsa-miR-223-3p increased significantly after 6 months of COVID-19 booster vaccination. Interestingly, an increased expression of certain EV-hsa-miRNAs was positively correlated. Bioinformatic analysis revealed that these correlated miRNAs play a critical role in regulating the targets present in antiviral responses and cytokine production. These findings suggest that EV-hsa-miR-15b-5p, EV-hsa-miR-24-3p, and EV-hsa-miR-223-3p may be crucial in immune response induced by mRNA vaccines.
Collapse
Affiliation(s)
- Beatriz Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Tânia R. Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-523 Porto, Portugal
| | - Pedro Cruz
- Department of Oncology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (P.C.); (J.O.)
| | - Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Catarina Esteves Pereira
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (C.E.P.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (C.E.P.); (B.C.-S.)
| | - Júlio Oliveira
- Department of Oncology, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (P.C.); (J.O.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-523 Porto, Portugal
- Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), 4249-004 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| |
Collapse
|
2
|
Abhange K, Kitata RB, Zhang J, Wang YT, Gaffrey MJ, Liu T, Gunchick V, Khaykin V, Sahai V, Cuneo KC, Parikh ND, Shi T, Lubman DM. In-Depth Proteome Profiling of Small Extracellular Vesicles Isolated from Cancer Cell Lines and Patient Serum. J Proteome Res 2024; 23:386-396. [PMID: 38113368 PMCID: PMC10947532 DOI: 10.1021/acs.jproteome.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.
Collapse
Affiliation(s)
- Komal Abhange
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Valerie Khaykin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
4
|
Tsering T, Li M, Chen Y, Nadeau A, Laskaris A, Abdouh M, Bustamante P, Burnier JV. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J Extracell Vesicles 2022; 11:e12270. [PMID: 36271888 PMCID: PMC9587709 DOI: 10.1002/jev2.12270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/20/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in cellular communication both in physiological conditions and in pathologies such as cancer. Emerging evidence has shown that EVs are active carriers of molecular cargo (e.g. protein and nucleic acids) and a powerful source of biomarkers and targets. While recent studies on EV‐associated DNA (EV‐DNA) in human biofluids have generated a large amount of data, there is currently no database that catalogues information on EV‐DNA. To fill this gap, we have manually curated a database of EV‐DNA data derived from human biofluids (liquid biopsy) and in‐vitro studies, called the Extracellular Vesicle‐Associated DNA Database (EV‐ADD). This database contains validated experimental details and data extracted from peer‐reviewed published literature. It can be easily queried to search for EV isolation methods and characterization, EV‐DNA isolation techniques, quality validation, DNA fragment size, volume of starting material, gene names and disease context. Currently, our database contains samples representing 23 diseases, with 13 different types of EV isolation techniques applied on eight different human biofluids (e.g. blood, saliva). In addition, EV‐ADD encompasses EV‐DNA data both representing the whole genome and specifically including oncogenes, such as KRAS, EGFR, BRAF, MYC, and mitochondrial DNA (mtDNA). An EV‐ADD data metric system was also integrated to assign a compliancy score to the MISEV guidelines based on experimental parameters reported in each study. While currently available databases document the presence of proteins, lipids, RNA and metabolites in EVs (e.g. Vesiclepedia, ExoCarta, ExoBCD, EVpedia, and EV‐TRACK), to the best of our knowledge, EV‐ADD is the first of its kind to compile all available EV‐DNA datasets derived from human biofluid samples. We believe that this database provides an important reference resource on EV‐DNA‐based liquid biopsy research, serving as a learning tool and to showcase the latest developments in the EV‐DNA field. EV‐ADD will be updated yearly as newly published EV‐DNA data becomes available and it is freely available at www.evdnadatabase.com.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mingyang Li
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Yunxi Chen
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Amélie Nadeau
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alexander Laskaris
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Mohamed Abdouh
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Prisca Bustamante
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Julia V. Burnier
- Cancer Research ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityMontrealQuebecCanada
- Experimental Pathology UnitDepartment of PathologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
5
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|
6
|
Sedej I, Štalekar M, Tušek Žnidarič M, Goričar K, Kojc N, Kogovšek P, Dolžan V, Arnol M, Lenassi M. Extracellular vesicle-bound DNA in urine is indicative of kidney allograft injury. J Extracell Vesicles 2022; 11:e12268. [PMID: 36149031 PMCID: PMC9503341 DOI: 10.1002/jev2.12268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
Extracellular vesicle‐bound DNA (evDNA) is an understudied extracellular vesicle (EV) cargo, particularly in cancer‐unrelated research. Although evDNA has been detected in urine, little is known about its characteristics, localization, and biomarker potential for kidney pathologies. To address this, we enriched EVs from urine of well‐characterized kidney transplant recipients undergoing allograft biopsy, characterized their evDNA and its association to allograft injury. The SEC‐based method enriched pure EVs from urine of kidney transplant recipients, regardless of the allograft injury. Urinary evDNA represented up to 29.2 ± 8% (mean ± SD) of cell‐free DNA (cfDNA) and correlated with cfDNA in several characteristics but was less fragmented (P < 0.001). Importantly, using DNase treatment and immunogold labelling TEM, we demonstrated that evDNA was bound to the surface of urinary EVs. Normalised evDNA yield (P = 0.042) and evDNA copy number (P = 0.027) significantly differed between patients with normal histology, rejection injury and non‐rejection injury, the later groups having significantly larger uEVs (mean diameter, P = 0.045) and more DNA bound per uEV. ddDNA is detectable in uEV samples of kidney allograft recipients, but its quantity is highly variable. In a proof‐of‐principle study, several evDNA characteristics correlated with clinical and histological parameters (P = 0.040), supporting that the potential of evDNA as a biomarker for kidney allograft injury should be further investigated.
Collapse
Affiliation(s)
- Ivana Sedej
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Štalekar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Dobre EG, Constantin C, Neagu M. Skin Cancer Research Goes Digital: Looking for Biomarkers within the Droplets. J Pers Med 2022; 12:jpm12071136. [PMID: 35887633 PMCID: PMC9323323 DOI: 10.3390/jpm12071136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Skin cancer, which includes the most frequent malignant non-melanoma carcinomas (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC), along with the difficult to treat cutaneous melanoma (CM), pose important worldwide issues for the health care system. Despite the improved anti-cancer armamentarium and the latest scientific achievements, many skin cancer patients fail to respond to therapies, due to the remarkable heterogeneity of cutaneous tumors, calling for even more sophisticated biomarker discovery and patient monitoring approaches. Droplet digital polymerase chain reaction (ddPCR), a robust method for detecting and quantifying low-abundance nucleic acids, has recently emerged as a powerful technology for skin cancer analysis in tissue and liquid biopsies (LBs). The ddPCR method, being capable of analyzing various biological samples, has proved to be efficient in studying variations in gene sequences, including copy number variations (CNVs) and point mutations, DNA methylation, circulatory miRNome, and transcriptome dynamics. Moreover, ddPCR can be designed as a dynamic platform for individualized cancer detection and monitoring therapy efficacy. Here, we present the latest scientific studies applying ddPCR in dermato-oncology, highlighting the potential of this technology for skin cancer biomarker discovery and validation in the context of personalized medicine. The benefits and challenges associated with ddPCR implementation in the clinical setting, mainly when analyzing LBs, are also discussed.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Correspondence:
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
8
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Vinokurova SV, Galetsky SA, Elkina NV, Denisova DA, Enikeev AD, Tchevkina EM. Extracellular Vesicles from Uterine Aspirates Represent a Promising Source for Screening Markers of Gynecologic Cancers. Cells 2022; 11:cells11071064. [PMID: 35406627 PMCID: PMC8997481 DOI: 10.3390/cells11071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are key factors of intercellular communication, performing both local and distant transfers of bioactive molecules. The increasingly obvious role of EVs in carcinogenesis, similarity of molecular signatures with parental cells, precise selection and high stability of cargo molecules make exosomes a promising source of liquid biopsy markers for cancer diagnosis. The uterine cavity fluid, unlike blood, urine and other body fluids commonly used to study EVs, is of local origin and therefore enriched in EVs secreted by cells of the female reproductive tract. Here, we show that EVs, including those corresponding to exosomes, could be isolated from individual samples of uterine aspirates (UA) obtained from epithelial ovarian cancer (EOC) patients and healthy donors using the ultracentrifugation technique. First, the conducted profiling of small RNAs (small RNA-seq) from UA-derived EVs demonstrated the presence of non-coding RNA molecules belonging to various classes. The analysis of the miRNA content in EVs from UA performed on a pilot sample revealed significant differences in the expression levels of a number of miRNAs in EVs obtained from EOC patients compared to healthy individuals. The results open up prospects for using UA-derived EVs as a source of markers for the diagnostics of gynecological cancers, including EOC.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Andrey V. Komelkov
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
- Correspondence: ; Tel.: +7-926-482-9147
| | - Kirill I. Zhordania
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 111234 Moscow, Russia;
| | - Svetlana V. Vinokurova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Sergey A. Galetsky
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Nadezhda V. Elkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Darya A. Denisova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Adel D. Enikeev
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Elena M. Tchevkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| |
Collapse
|
9
|
Exosomal Carboxypeptidase E (CPE) and CPE-shRNA-Loaded Exosomes Regulate Metastatic Phenotype of Tumor Cells. Int J Mol Sci 2022; 23:ijms23063113. [PMID: 35328535 PMCID: PMC8953963 DOI: 10.3390/ijms23063113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Exosomes promote tumor growth and metastasis through intercellular communication, although the mechanism remains elusive. Carboxypeptidase E (CPE) supports the progression of different cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether CPE is the bioactive cargo within exosomes, and whether it contributes to tumorigenesis, using HCC cell lines as a cancer model. Methods: Exosomes were isolated from supernatant media of cancer cells, or human sera. mRNA and protein expression were analyzed using PCR and Western blot. Low-metastatic HCC97L cells were incubated with exosomes derived from high-metastatic HCC97H cells. In other experiments, HCC97H cells were incubated with CPE-shRNA-loaded exosomes. Cell proliferation and invasion were assessed using MTT, colony formation, and matrigel invasion assays. Results: Exosomes released from cancer cells contain CPE mRNA and protein. CPE mRNA levels are enriched in exosomes secreted from high- versus low-metastastic cells, across various cancer types. In a pilot study, significantly higher CPE copy numbers were found in serum exosomes from cancer patients compared to healthy subjects. HCC97L cells, treated with exosomes derived from HCC97H cells, displayed enhanced proliferation and invasion; however, exosomes from HCC97H cells pre-treated with CPE-shRNA failed to promote proliferation. When HEK293T exosomes loaded with CPE-shRNA were incubated with HCC97H cells, the expression of CPE, Cyclin D1, a cell-cycle regulatory protein and c-myc, a proto-oncogene, were suppressed, resulting in the diminished proliferation of HCC97H cells. Conclusions: We identified CPE as an exosomal bioactive molecule driving the growth and invasion of low-metastatic HCC cells. CPE-shRNA loaded exosomes can inhibit malignant tumor cell proliferation via Cyclin D1 and c-MYC suppression. Thus, CPE is a key player in the exosome transmission of tumorigenesis, and the exosome-based delivery of CPE-shRNA offers a potential treatment for tumor progression. Notably, measuring CPE transcript levels in serum exosomes from cancer patients could have potential liquid biopsy applications.
Collapse
|
10
|
Liguori GL, Kisslinger A. Quality Management Tools on the Stage: Old but New Allies for Rigor and Standardization of Extracellular Vesicle Studies. Front Bioeng Biotechnol 2022; 10:826252. [PMID: 35360394 PMCID: PMC8960150 DOI: 10.3389/fbioe.2022.826252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
11
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Catoni C, Di Paolo V, Rossi E, Quintieri L, Zamarchi R. Cell-Secreted Vesicles: Novel Opportunities in Cancer Diagnosis, Monitoring and Treatment. Diagnostics (Basel) 2021; 11:1118. [PMID: 34205256 PMCID: PMC8233857 DOI: 10.3390/diagnostics11061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication playing a pivotal role in the regulation of physiological and pathological processes, including cancer. In particular, there is significant evidence suggesting that tumor-derived EVs exert an immunosuppressive activity during cancer progression, as well as stimulate tumor cell migration, angiogenesis, invasion and metastasis. The use of EVs as a liquid biopsy is currently a fast-growing area of research in medicine, with the potential to provide a step-change in the diagnosis and treatment of cancer, allowing the prediction of both therapy response and prognosis. EVs could be useful not only as biomarkers but also as drug delivery systems, and may represent a target for anticancer therapy. In this review, we attempted to summarize the current knowledge about the techniques used for the isolation of EVs and their roles in cancer biology, as liquid biopsy biomarkers and as therapeutic tools and targets.
Collapse
Affiliation(s)
- Cristina Catoni
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| |
Collapse
|