1
|
Husa P, Snopkova S, Zavrelova J, Zlamal F, Svacinka R, Husa P. Circulating microparticles in patients with chronic hepatitis C and changes during direct-acting antiviral therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:146-151. [PMID: 33928944 DOI: 10.5507/bp.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microparticles (MPs) are heterogeneous vesicles derived from membranes of different cells. Between 70 to 90% of MPs detected in blood originate from platelets. The release of MPs is associated with proinflammatory and procoagulant states. Elevated levels of MPs have been found in different diseases. We investigated MPs levels in patients with chronic hepatitis C (CHC) and changes in level during treatment using direct-acting antivirotics (DAA). PATIENTS AND METHODS Thirty-six patients with CHC and forty healthy volunteers were included in the study. Concentrations of MPs were determined indirectly by measuring their procoagulant activity in plasma at baseline, end of therapy (EOT), and 12 weeks after EOT when the sustained virological response was assessed (SVR12). RESULTS All patients achieved SVR12, which was associated with rapid improvement of markers of liver damage and function as well as liver stiffness (P=0.002). MPs levels were significantly higher in CHC patients than in healthy volunteers (P<0.001). No statistically significant decrease was found observed between baseline and SVR12 (P=0,330). Analysis of subpopulations with minimal fibrosis F0-1 (P=0.647), advanced fibrosis F2-4 (P=0.370), women(P=0.847), men (P=0.164) and genotype 1 (P=0.077) showed no significant changes during the follow-up period. CONCLUSIONS MPs levels are higher in CHC patients and remain elevated shortly after achieving SVR. Higher concentrations of MPs in plasma are probably caused by a chronic uncontrolled exaggerated inflammatory response caused by CHC. Longer observation would probably confirm the significance of MPs levels decrease because normalization of liver function, inflammation, and structure after SVR requires more than 12 weeks.
Collapse
Affiliation(s)
- Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Svatava Snopkova
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jirina Zavrelova
- Department of Hematology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Filip Zlamal
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 60200 Brno, Czech Republic
| | - Radek Svacinka
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
2
|
Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? Am J Physiol Gastrointest Liver Physiol 2021; 320:G485-G495. [PMID: 33471632 DOI: 10.1152/ajpgi.00362.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.
Collapse
Affiliation(s)
- Alexandre Villard
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France.,EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Jérôme Boursier
- EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France
| |
Collapse
|
3
|
Balaphas A, Meyer J, Sadoul R, Morel P, Gonelle-Gispert C, Bühler LH. Extracellular vesicles: Future diagnostic and therapeutic tools for liver disease and regeneration. Liver Int 2019; 39:1801-1817. [PMID: 31286675 DOI: 10.1111/liv.14189] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 02/13/2023]
Abstract
Extracellular vesicles are membrane fragments that can be produced by all cell types. Interactions between extracellular vesicles and various liver cells constitute an emerging field in hepatology and recent evidences have established a role for extracellular vesicles in various liver diseases and physiological processes. Extracellular vesicles originating from liver cells are implicated in intercellular communication and fluctuations of specific circulating extracellular vesicles could constitute new diagnostic tools. In contrast, extracellular vesicles derived from progenitor cells interact with hepatocytes or non-parenchymal cells, thereby protecting the liver from various injuries and promoting liver regeneration. Our review focuses on recent developments investigating the role of various types of extracellular vesicles in acute and chronic liver diseases as well as their potential use as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Rémy Sadoul
- Université Grenoble Alpes, Institut des Neurosciences, Grenoble, France
| | - Philippe Morel
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| | - Leo Hans Bühler
- Division of Digestive Surgery, University Hospitals of Geneva, Geneva, Switzerland.,Surgical Research Unit, University Hospitals of Geneva, Geneva, Switzerland.,Geneva Medical School, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Balaphas A, Meyer J, Sadoul K, Fontana P, Morel P, Gonelle-Gispert C, Bühler LH. Platelets and Platelet-Derived Extracellular Vesicles in Liver Physiology and Disease. Hepatol Commun 2019; 3:855-866. [PMID: 31304449 PMCID: PMC6601322 DOI: 10.1002/hep4.1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond their role in hemostasis, platelets are proposed as key mediators of several physiological and pathophysiological processes of the liver, such as liver regeneration, toxic or viral acute liver injury, liver fibrosis, and carcinogenesis. The effects of platelets on the liver involve interactions with sinusoidal endothelial cells and the release of platelet‐contained molecules following platelet activation. Platelets are the major source of circulating extracellular vesicles, which are suggested to play key roles in platelet interactions with endothelial cells in several clinical disorders. In the present review, we discuss the implications of platelet‐derived extracellular vesicles in physiological and pathophysiological processes of the liver.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Karin Sadoul
- Regulation and Pharmacology of the Cytoskeleton, Institute for Advanced Biosciences Université Grenoble Alpes Grenoble France
| | - Pierre Fontana
- Division of Angiology and Hemostasis Geneva University Hospitals Geneva Switzerland.,Geneva Platelet Group University of Geneva Geneva Switzerland
| | - Philippe Morel
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| | - Leo H Bühler
- Division of Digestive Surgery Geneva University Hospitals Geneva Switzerland.,Surgical Research Unit Geneva University Hospitals Geneva Switzerland.,Geneva Medical School University of Geneva Geneva Switzerland
| |
Collapse
|
5
|
Tziatzios G, Polymeros D, Spathis A, Triantafyllou M, Gkolfakis P, Karakitsos P, Dimitriadis G, Triantafyllou K. Increased levels of circulating platelet derived microparticles in Crohn's disease patients. Scand J Gastroenterol 2016; 51:1184-92. [PMID: 27191369 DOI: 10.1080/00365521.2016.1182582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Platelet activation is a consistent feature in inflammatory bowel disease. However, the role of circulating platelet derived microparticles (PDMPs) and the effects of disease activity and treatment on their levels has not been clarified yet in this disorder. MATERIAL AND METHODS Using flow cytometry, we measured platelet derived microparticles and platelet derived microparticles expressing Annexin V in platelet rich plasma from 47 Crohn's disease and 43 ulcerative colitis patients and 24 healthy controls. RESULTS Crohn's disease patients have greater PDMPs (0.31% ± 0.07% versus 0.14% ± 0.04%, p = 0.02) and PDMPs expressing Annexin V (27% ± 2.6% versus 14.6% ± 2.7%, p = 0.002) levels in comparison with healthy controls; however, both microparticles levels are not related with disease activity. Crohn's disease patients on 5-ASA therapy show lower levels of PDMPs in comparison with those on no 5-ASA (0.30% ± 0.07% versus 0.32% ± 0.09%, p = 0.048). Ulcerative colitis patients have similar PDMPs and PDMPs expressing Annexin V levels, compared to healthy controls (p = 0.06 and p = 0.2, respectively) and there is no correlation of both microparticles expression with disease activity. 5-ASA has no effect on both microparticles levels in ulcerative colitis patients. Anti-TNF-α treatment has no effect on study's microparticles expression in Crohn's and ulcerative colitis patients. CONCLUSIONS Circulating levels of platelet derived microparticles are increased only in Crohn's patients, but they do not correlate with disease activity. 5-ASA treatment is associated with lower levels of PDMPs only in Crohn's, while anti-TNF-α treatment does not influence expression of microparticles in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Georgios Tziatzios
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Dimitrios Polymeros
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Aris Spathis
- b Laboratory of Cytopathology , Medical School, National and Kapodistrian University, "Attikon" University General Hospital , Athens , Greece
| | - Maria Triantafyllou
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Paraskevas Gkolfakis
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Petros Karakitsos
- b Laboratory of Cytopathology , Medical School, National and Kapodistrian University, "Attikon" University General Hospital , Athens , Greece
| | - George Dimitriadis
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| | - Konstantinos Triantafyllou
- a Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic Research Institute and Diabetes Center , "Attikon" University General Hospital , Athens , Greece
| |
Collapse
|