1
|
Nakadai K, Koiwa T. Psychologically-Inspired Audio-Visual Speech Recognition Using Coarse Speech Recognition and Missing Feature Theory. JOURNAL OF ROBOTICS AND MECHATRONICS 2017. [DOI: 10.20965/jrm.2017.p0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[abstFig src='/00290001/10.jpg' width='300' text='System architecture of AVSR based on missing feature theory and P-V grouping' ] Audio-visual speech recognition (AVSR) is a promising approach to improving the noise robustness of speech recognition in the real world. For AVSR, the auditory and visual units are the phoneme and viseme, respectively. However, these are often misclassified in the real world because of noisy input. To solve this problem, we propose two psychologically-inspired approaches. One is audio-visual integration based on missing feature theory (MFT) to cope with missing or unreliable audio and visual features for recognition. The other is phoneme and viseme grouping based on coarse-to-fine recognition. Preliminary experiments show that these two approaches are effective for audio-visual speech recognition. Integration based on MFT with an appropriate weight improves the recognition performance by −5 dB. This is the case even in a noisy environment, in which most speech recognition systems do not work properly. Phoneme and viseme grouping further improved the AVSR performance, particularly at a low signal-to-noise ratio.**This work is an extension of our publication “Tomoaki Koiwa et al.: Coarse speech recognition by audio-visual integration based on missing feature theory, IROS 2007, pp.1751-1756, 2007.”
Collapse
|