1
|
Lee Y, Park SJ, Kim K, Kim TO, Lee SE. Antifungal and Antiaflatoxigenic Activities of Massoia Essential Oil and C10 Massoia Lactone against Aflatoxin-Producing Aspergillus flavus. Toxins (Basel) 2023; 15:571. [PMID: 37755997 PMCID: PMC10537029 DOI: 10.3390/toxins15090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal infection and mycotoxin contamination are major hazards to the safe storage and distribution of foods and feeds consumed by humans and livestock. This study investigated the antifungal and antiaflatoxigenic activities of massoia essential oil (MEO) and its major constituent, C10 massoia lactone (C10), against aflatoxin B (AFB)-producing Aspergillus flavus ATCC 22546. Their antifungal activities were evaluated using a disc diffusion assay, agar dilution method, and a mycelial growth inhibition assay with the AFB analysis using liquid chromatography triple quadrupole mass spectrometry. MEO and C10 exhibited similar antifungal and antiaflatoxigenic activities against A. flavus. C10 was a primary constituent in MEO and represented up to 45.1% of total peak areas analyzed by gas chromatography-mass spectrometry, indicating that C10 is a major compound contributing to the antifungal and antiaflatoxigenic activities of MEO. Interestingly, these two materials increased AFB production in A. flavus by upregulating the expression of most genes related to AFB biosynthesis by 3- to 60-fold. Overall, MEO and C10 could be suitable candidates as natural preservatives to control fungal infection and mycotoxin contamination in foods and feeds as Generally Recognized As Safe (GRAS) in the Flavor and Extract Manufacturers Association of the United States (FEMA), and MEO is a more suitable substance than C10 because of its wider range of uses and higher allowed concentration than C10.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Soo Jean Park
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Tae-Oh Kim
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Sung-Eun Lee
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Salas-Oropeza J, Rodriguez-Monroy MA, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Jarquin-Yanez K, Canales-Martinez MM. Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays. Molecules 2023; 28:6258. [PMID: 37687087 PMCID: PMC10488845 DOI: 10.3390/molecules28176258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast migration in a three-dimensional in vitro model. For the three-dimensional in vitro model, a series of fibrin hydrogel scaffolds (FSs) were built in which fibroblasts were cultured and subsequently stimulated with fibroblast growth factor (FGF) or EO. The results demonstrated that these FSs are appropriate for fibroblast culture, since no decrease in cell viability or changes in cell proliferation were found. The results also showed that this EO promotes cell migration four hours after stimulation, and the formation of cell projections (filopodia) outside the SF was observed. From these results, we confirmed that part of the mechanism of action of the essential oil of B. morelensis during the healing process is the stimulation of fibroblast migration to the wound site.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina Facultad de Estudios Superiores-Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico;
| | - Manuel Jimenez-Estrada
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico;
| | - Armando Perez-Torres
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Andres Eliu Castell-Rodriguez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Katia Jarquin-Yanez
- Facultad de Medicina-UNAM, Circuito Exterior, Ciudad Universitaria, Ciudad de México D.F. 04510, Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla C.P. 54090, Mexico; (J.S.-O.); (R.B.-M.)
| |
Collapse
|
3
|
Espinosa-Espinosa L, Canales-Alvarez O, Rodríguez-López MG, Flores-Tinajero CA, Canales-Martinez MM, Rodriguez-Monroy MA. Biological Activity of Bursera schlechtendalii Essential oil and the Roles of Its Chemical Components in the Wound Healing Process. Int J Mol Sci 2023; 24:11040. [PMID: 37446220 DOI: 10.3390/ijms241311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Essential oils are composed of terpenes, some of which have properties related to healing. Bursera schlechtendalii essential oil (BSEO) is used to heal superficial wounds. However, there have been no studies verifying this property. The objectives of this study were to evaluate the healing activity of BSEO in a murine model and to propose the roles of its chemical components in this process. Healing activity was evaluated by an incision model, histological analysis was performed, and tensile strength and antibacterial activity were measured. The chemical composition of BSEO was determined by gas chromatography coupled with mass spectrometry (GC-MS), and the mechanisms of action of each chemical component during the phases of the healing process were proposed. In addition, acute dermal toxicity was evaluated. BSEO showed better wound closure at the macroscopic, histological, and tensile strength levels compared to controls and had an antibacterial effect. The major compound in BSEO was α-phellandrene. However, most of the monoterpenes identified in BSEO were in agreement with information found in the literature, so the possibility of synergy between the chemical components and their different targets in the healing process was schematically proposed. BSEO was shown to be safe in the dermal toxicity evaluation.
Collapse
Affiliation(s)
- Lesslie Espinosa-Espinosa
- Laboratorio de Investigación Biomédica de Productos Naturales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Octavio Canales-Alvarez
- Laboratorio de Investigación Biomédica de Productos Naturales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Marlene Guadalupe Rodríguez-López
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - César Antonio Flores-Tinajero
- Laboratorio de Fitoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica de Productos Naturales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| |
Collapse
|
4
|
Laurintino TN, Tramontin DP, Assreuy J, Cruz AB, Cruz CCB, Marangoni A, Livia MA, Bolzan A. Evaluation of the biological activity and chemical profile of supercritical and subcritical extracts of Bursera graveolens from northern Peru. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Medina-Romero YM, Rodriguez-Canales M, Rodriguez-Monroy MA, Hernandez-Hernandez AB, Delgado-Buenrostro NL, Chirino YI, Cruz-Sanchez T, Garcia-Tovar CG, Canales-Martinez MM. Effect of the Essential Oils of Bursera morelensis and Lippia graveolens and Five Pure Compounds on the Mycelium, Spore Production, and Germination of Species of Fusarium. J Fungi (Basel) 2022; 8:jof8060617. [PMID: 35736100 PMCID: PMC9224590 DOI: 10.3390/jof8060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Fusarium causes many diseases in economically important plants. Synthetic agents are used to control postharvest diseases caused by Fusarium, but the use of these synthetic agents generates several problems, making it necessary to develop new alternative pesticides. Essential oils can be used as a new control strategy. The essential oils of Bursera morelensis and Lippia graveolens have been shown to have potent antifungal activity against Fusarium. However, for the adequate management of diseases, as well as the optimization of the use of essential oils, it is necessary to know how essential oils act on the growth and reproduction of the fungus. In this study, the target of action of the essential oils of B. morelensis and L. graveolens and of the pure compounds present in the essential oils (carvacrol, p-cymene, α-phellandrene, α-pinene, and Υ-terpinene) was determined by evaluating the effect on hyphal morphology, as well as on spore production and germination of three Fusarium species. In this work, carvacrol was found to be the compound that produced the highest inhibition of radial growth. Essential oils and pure compounds caused significant damage to hyphal morphology and affected spore production and germination of Fusarium species.
Collapse
Affiliation(s)
- Yoli Mariana Medina-Romero
- Laboratorio de Farmacognosia, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (Y.M.M.-R.); (A.B.H.-H.)
| | - Mario Rodriguez-Canales
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (M.R.-C.); (M.A.R.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (M.R.-C.); (M.A.R.-M.)
| | - Ana Bertha Hernandez-Hernandez
- Laboratorio de Farmacognosia, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (Y.M.M.-R.); (A.B.H.-H.)
| | - Norma Laura Delgado-Buenrostro
- Laboratorio 10, Carcinogénesis y Toxicología, Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (N.L.D.-B.); (Y.I.C.)
| | - Yolanda I. Chirino
- Laboratorio 10, Carcinogénesis y Toxicología, Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (N.L.D.-B.); (Y.I.C.)
| | - Tonatiuh Cruz-Sanchez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli CP 54714, Estado de Mexico, Mexico;
| | - Carlos Gerardo Garcia-Tovar
- Laboratorio de Morfología Veterniaria y Biología Celular, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. Teoloyucan Km 2.5, San Sebastian Xhala, Cuautitlán Izcalli CP 54714, Estado de Mexico, Mexico;
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de Mexico, Mexico; (Y.M.M.-R.); (A.B.H.-H.)
- Correspondence: ; Tel.: +52-55-27-69-21-73
| |
Collapse
|
6
|
Mudau FN, Chimonyo VGP, Modi AT, Mabhaudhi T. Neglected and Underutilised Crops: A Systematic Review of Their Potential as Food and Herbal Medicinal Crops in South Africa. Front Pharmacol 2022; 12:809866. [PMID: 35126143 PMCID: PMC8811033 DOI: 10.3389/fphar.2021.809866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The African continent harbours many native species with nutraceutical and pharmaceutical potential. This study reviewed underutilised crops in South Africa to determine their potential as food and herbal medicinal crops. Over 5,000 species have been identified and earmarked for their medical attributes in formal and informal setups. Researchers, plant breeders and policymakers have mostly ignored the development potential of these crops. Consequently, their value chains are poorly developed. In South Africa, there is a wide range of neglected and underutilised crops, which were historically popular and used by communities; however, over the years, they have lost their status within farming systems and been relegated to the status of neglected and underutilised. Recently, driven by the need to transition to more sustainable and resilient food systems, there has been renewed interest in their potential as food and herbal medicinal crops to establish new value chains that include vulnerable groups. They are now gaining global attention, and their conservation and sustainable utilisation are now being prioritized. The review confirmed that several of these crops possess nutraceutical and pharmaceutical properties, highlighting their potential for development as food and herbal medicines. However, current production levels are too low to meet the requirements for industrial development; research and development should focus on all aspects of their value chain, from crop improvement to utilisation. A transdisciplinary approach involving a wide range of actors is needed to develop the identified neglected and underutilised crops' potential as food and herbal medicinal crops and support the development of new and inclusive value chains.
Collapse
Affiliation(s)
- Fhatuwani Nixwell Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Vimbayi Grace Petrova Chimonyo
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- International Maize and Wheat Improvement Center (CIMMYT), Harare, Zimbabwe
| | - Albert Thembinkosi Modi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Tafadzwanashe Mabhaudhi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- International Water Management Institute (IWMI-GH), West Africa Office, Kumasi, Ghana
| |
Collapse
|
7
|
Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Sci Rep 2021; 11:20135. [PMID: 34635777 PMCID: PMC8505479 DOI: 10.1038/s41598-021-99773-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Fruit and vegetable crops that are not consumed immediately, unlike other agricultural products, require economic and time investments until they reach the final consumers. Synthetic agrochemicals are used to maintain and prolong the storage life of crops and avoid losses caused by phytopathogenic microorganisms. However, the excessive use of synthetic agrochemicals creates health problems and contributes to environmental pollution. To avoid these problems, less toxic and environment-friendly alternatives are sought. One of these alternatives is the application of biopesticides. However, few biopesticides are currently used. In this study, the biopesticide activity of Bursera morelensis and Lippia graveolens essential oils was evaluated. Their antifungal activity has been verified in an in vitro model, and chemical composition has been determined using gas chromatography-mass spectrometry. Their antifungal activity was corroborated in vitro, and their activity as biopesticides was subsequently evaluated in a plant model. In addition, the persistence of these essential oils on the surface of the plant model was determined. Results suggest that both essential oils are promising candidates for producing biopesticides. This is the first study showing that B. morelensis and L. graveolens essential oils work by inhibiting mycelial growth and spore germination and are environment-friendly biopesticides.
Collapse
|
8
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
9
|
Salas-Oropeza J, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Rodriguez-Monroy MA, Jarquin-Yañez K, Canales-Martinez MM. Wound Healing Activity of α-Pinene and α-Phellandrene. Molecules 2021; 26:molecules26092488. [PMID: 33923276 PMCID: PMC8123182 DOI: 10.3390/molecules26092488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
| | - Manuel Jimenez-Estrada
- Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico;
| | - Armando Perez-Torres
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Andres Eliu Castell-Rodriguez
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
| | | | - Katia Jarquin-Yañez
- Facultad de Medicina, UNAM, Circuito Exterior, Ciudad Universitaria, 02860 D.F., Mexico; (A.P.-T.); (A.E.C.-R.); (K.J.-Y.)
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO Facultad de Estudios Superiores Iztacala, UNAM, 54108 Tlalnepantla, Mexico; (J.S.-O.); (R.B.-M.)
- Correspondence: ; Tel.: +52-55-2-769-21-73; Fax: +52-55-5-623-12-25
| |
Collapse
|
10
|
Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26041093. [PMID: 33669627 PMCID: PMC7922942 DOI: 10.3390/molecules26041093] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs and their compounds for application as antifungal agents for the treatment of skin diseases via conventional and nonconventional approaches. A search was conducted using three databases (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010-2020 that are freely available in English were extracted. In our findings, EOs with a high percentage of monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal properties against various skin diseases. Some researchers developed advanced formulations such as gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research.
Collapse
|
11
|
Martínez Y, Más D, Betancur C, Gebeyew K, Adebowale T, Hussain T, Lan W, Ding X. Role of the Phytochemical Compounds like Modulators in Gut Microbiota and Oxidative Stress. Curr Pharm Des 2020; 26:2642-2656. [PMID: 32410554 DOI: 10.2174/1381612826666200515132218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Currently, daily consumption of green herb functional food or medicinal herbs has increased as adopted by many people worldwide as a way of life or even as an alternative to the use of synthetic medicines. Phytochemicals, which are a series of compounds of relatively complex structures and restricted distribution in plants, usually perform the defensive functions for plants against insects, bacteria, fungi or other pathogenic factors. A series of studies have found their effectiveness in the treatment or prevention of systemic diseases such as autoimmune diseases, cancer, neurodegenerative diseases, Crohn's disease and so on. OBJECTIVE This review systematizes the literature on the mechanisms of the phytochemicals that react against unique free radicals and prevent the oxidative stress and also summarizes their role in gut microbiota inhibiting bacterial translocation and damage to the intestinal barrier and improving the intestinal membrane condition. CONCLUSION The gut microbiota modulation and antioxidant activities of the phytochemicals shall be emphasized on the research of the active principles of the phytochemicals.
Collapse
Affiliation(s)
- Yordan Martínez
- Escuela Agrícola Panamericana Zamorano, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan 96, Honduras
| | - Dairon Más
- Laboratorio de Nutricion Animal, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro 76230, Mexico
| | - Cesar Betancur
- Departamento de Ganaderia, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Monteria 230002, Colombia
| | - Kefyalew Gebeyew
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tolulope Adebowale
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine. Food Inspection and Quarantine Center of Shenzhen Custom, 1011Fuqiang Road, Shenzhen 518045, China
| | - Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
12
|
Salas-Oropeza J, Jimenez-Estrada M, Perez-Torres A, Castell-Rodriguez AE, Becerril-Millan R, Rodriguez-Monroy MA, Canales-Martinez MM. Wound Healing Activity of the Essential Oil of Bursera morelensis, in Mice. Molecules 2020; 25:molecules25081795. [PMID: 32295241 PMCID: PMC7221833 DOI: 10.3390/molecules25081795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023] Open
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as “aceitillo”, and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis’ essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen.
Collapse
Affiliation(s)
- Judith Salas-Oropeza
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Manuel Jimenez-Estrada
- Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacan CDMX 04510, Mexico;
| | - Armando Perez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX 04510, Mexico; (A.P.-T.); (A.E.C.-R.)
| | - Andres Eliu Castell-Rodriguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, CDMX 04510, Mexico; (A.P.-T.); (A.E.C.-R.)
| | - Rodolfo Becerril-Millan
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
| | - Marco Aurelio Rodriguez-Monroy
- Carrera de Medicina, Facultad de Estudios Superiores-Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala Tlalnepantla, Edo, Mex 54090, Mexico;
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo, Mex 54090, Mexico; (J.S.-O.); (R.B.-M.)
- Correspondence: ; Tel.: +52-55-5-623-11-27; Fax: +52-55-5-623-12-25
| |
Collapse
|
13
|
Comparison of Biological Properties of Two Medicinal Extracts of the Tehuacan-Cuicatlan Valley. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4918090. [PMID: 30538760 PMCID: PMC6258104 DOI: 10.1155/2018/4918090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
In the Valley of Tehuacan-Cuicatlan, Cyrtocarpa procera and Bursera morelensis are located and are used in traditional medicine. In this research, several biological properties were evaluated. The methanol extracts of C. procera (MeCp) and B. morelensis (MeBm) were obtained by maceration. The antibacterial activities of the extracts were evaluated by the Kirby–Baüer disc-diffusion method. The wound healing activity was evaluated by histopathological analysis. Both extracts had a bacteriostatic effect in the Staphylococcus aureus (MeCp MIC = 0.25 mg/mL and MeBm MIC = 1 mg/mL) and the Vibrio cholerae (MeCp MIC = 1 mg/mL and MeBm MIC = 4 mg/mL). Both extracts demonstrated a wound healing efficacy similar to the reference standard (Recoveron). They also showed a high antioxidant capacity (MeCp SC50 = 5.75 μg/mL and MeBm SC50 = 4.27 μg/mL). These results are related to the concentration of phenols (MeCp = 166 and MeBm = 236.6 mg GAe/g) and flavonoids of MeCp = 16 and MeBm = 22 μg Qe/g. Both extracts, acting in a similar way in microorganisms that cause infection thanks to their antioxidant activity, favor the healing of wounds. This is the first study in which the biological properties of these two species are compared.
Collapse
|
14
|
Rivera-Yañez CR, Terrazas LI, Jimenez-Estrada M, Campos JE, Flores-Ortiz CM, Hernandez LB, Cruz-Sanchez T, Garrido-Fariña GI, Rodriguez-Monroy MA, Canales-Martinez MM. Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene-An In Vitro Study. Molecules 2017; 22:molecules22122095. [PMID: 29206158 PMCID: PMC6149968 DOI: 10.3390/molecules22122095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 12/03/2022] Open
Abstract
The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans. The essential oil was obtained by the hydro-distillation method and analyzed using GC–MS. The anti-Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC–MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti-Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1.
Collapse
Affiliation(s)
- C Rebeca Rivera-Yañez
- Laboratorio de Farmacognosia, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - L Ignacio Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - Manuel Jimenez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán CDMX 04510, Mexico.
| | - Jorge E Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - Cesar M Flores-Ortiz
- Laboratorio de Fisiología Vegetal, UBIPRO y Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala UNAM. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - Luis B Hernandez
- Laboratorio de Fisiología Vegetal, UBIPRO y Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala UNAM. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - Tonatiuh Cruz-Sanchez
- Laboratorio de Microbiología, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli, Edo. de México C.P. 54700, Mexico.
| | - German I Garrido-Fariña
- Laboratorio de Apoyo a Histología y Biología, Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Campo 4, Universidad Nacional Autónoma de México. Carretera Cuautitlán-Teoloyucan Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli, Edo. de México C.P. 54700, Mexico.
| | - Marco A Rodriguez-Monroy
- Laboratorio de Inmunobiología, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios Numero 1, Colonia Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| | - M Margarita Canales-Martinez
- Laboratorio de Farmacognosia, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. de México C.P. 54090, Mexico.
| |
Collapse
|