1
|
Wang SS, Zhai GQ, Huang ZG, Luo JY, He J, Huang JZ, Yang L, Xiao CN, Li SL, Chen KR, Chen YY, Ji HC, Ding JP, Li SH, Cheng JW, Chen G. Nitidine chloride regulates cell function of bladder cancer in vitro through downregulating Lymphocyte antigen 75. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2071-2085. [PMID: 36914902 DOI: 10.1007/s00210-023-02446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
Nitidine chloride (NC) is effective on cancer in many tumors, but its effect on bladder cancer (BC) is unknown. We conducted cell function experiments to verify the antineoplastic effect of NC on BC cell lines (5637, T24, and UM-UC-3) in vitro. Then, mRNAs of NC-treated and NC-untreated BC cells were extracted for mRNA sequencing. Differentially expressed genes (DEGs), expression analysis, and drug molecular docking were conducted to discover the target gene of NC. Finally, functional enrichment was analyzed to explore the underlying mechanisms. NC dramatically inhibited proliferation, migration, and invasion, and it induced apoptosis and arrested the S and G2/M phases of BC cell lines. Lymphocyte antigen 75 (LY75) appeared to be the target of NC. LY75 was highly expressed and had the ability to distinguish BC tissue from non-cancerous tissue. Then, drug molecular docking confirmed the targeting relationship between NC and LY75. Gene enrichment analysis showed that the downregulated genes, after being treated with NC, were mainly enriched in pathways relevant to cell pathophysiological processes. NC inhibits BC cell proliferation, migration, and invasion, induces apoptosis, and arrests cell cycles by downregulating the expression of LY75. This study provides molecular and theoretical bases for NC treatment of BC.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Gao-Qiang Zhai
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jie-Zhuang Huang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chu-Nan Xiao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Su-Li Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Rong Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yan-Yu Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Han-Chu Ji
- Department of Urology, Eighth Affiliated Hospital of Guangxi Medical University (Guigang City People's Hospital), Guigang, 537100, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun-Ping Ding
- Department of Urology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ji-Wen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
2
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|