1
|
Wei Y, Bai C, Xu S, Cui M, Wang R, Wu M. Diagnostic and Predictive Value of LncRNA MCM3AP-AS1 in Sepsis and Its Regulatory Role in Sepsis-Induced Myocardial Dysfunction. Cardiovasc Toxicol 2024; 24:1125-1138. [PMID: 39085530 DOI: 10.1007/s12012-024-09903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
The present study focused on exploring the clinical value and molecular mechanism of LncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in sepsis and sepsis-induced myocardial dysfunction (SIMD). 122 sepsis patients and 90 healthy were included. Sepsis patients were categorized into SIMD and non-MD. The expression levels of MCM3AP-AS1 and miRNA were examined using RT-qPCR. Diagnostic value of MCM3AP-AS1 in sepsis assessed by ROC curves. Logistic regression to explore risk factors influencing the occurrence of SIMD. Cardiomyocytes were induced by LPS to construct cell models in vitro. CCK-8, flow cytometry, and ELISA to analyze cell viability, apoptosis, and inflammation levels. Serum MCM3AP-AS1 was upregulated in patients with sepsis. The sensitivity and specificity of MCM3AP-AS1 were 75.41% and 93.33%, for recognizing sepsis from healthy controls. Additionally, elevated MCM3AP-AS1 is a risk factor for SIMD and can predict SIMD development. Compared with the LPS-induced cardiomyocytes, inhibition of MCM3AP-AS1 significantly attenuated LPS-induced apoptosis and inflammation; however, this attenuation was partially reversed by lowered miR-28-5p, but this reversal was partially eliminated by CASP2. MCM3AP-AS1 may be a novel diagnostic biomarker for sepsis and can predict the development of SIMD. MCM3AP-AS1 probably participated in SIMD progression by regulating cardiomyocyte inflammation and apoptosis through the target miR-28-5p/CASP2 axis.
Collapse
Affiliation(s)
- Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Cui Bai
- Department of Critical Care Medicine, Chongqing Yubei District People's Hospital, Chongqing, 401120, China
| | - Shuying Xu
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China
| | - Mingli Cui
- Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Ruixia Wang
- Department of Emergency, Binzhou Medical University Hospital, 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, Shandong, China.
| | - Meizhen Wu
- Department of Intensive Care Unit, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 3 Xincun Road, Xinghualing District, Taiyuan, 030013, Shanxi, China.
| |
Collapse
|
2
|
Lu N, Qin H, Meng Z, Yu Y, Gao Q, Cheng Z, Liu C, Hu J. Inhibiting apoptosis and GSDME-mediated pyroptosis attenuates hepatic injury in septic mice. Arch Biochem Biophys 2024; 754:109923. [PMID: 38408533 DOI: 10.1016/j.abb.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Sepsis is characterized by severe inflammation and organ dysfunction resulting from a dysregulated organismal response to infection. Although pyroptosis has been presumably shown to be a major cause of multiple organ failure and septic death, whether gasdermin E (GSDME)-mediated pyroptosis occurs in septic liver injury and whether inhibiting apoptosis and GSDME-mediated pyroptosis can attenuate septic liver injury remain unclear. This study investigated the role of apoptosis and GSDME-mediated pyroptosis in septic liver injury. METHODS Adult male C57BL/6 mice were randomly divided into four groups: sham, cecal ligation puncture (CLP), CLP + Z-DEVD-FMK (a caspase-3 inhibitor, 5 mg/kg), and CLP + Ac-DMLD-CMK (a GSDME inhibitor, 5 mg/kg). Sepsis severity was assessed using the murine sepsis score (MSS). Hepatic tissue damage was observed by the hematoxylin-eosin staining method, the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the levels of malondialdehyde (MDA), the concentrations of interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured according to the related kits, and the changes in the hepatic tissue reactive oxygen species (ROS) levels were detected by immunofluorescence (IF). The protein expression levels of cleaved caspase-3, GSDME-N, IL-1β, B-cell lymphoma-2 (Bcl-2), cytochrome C (Cyt-c), and acetaldehyde dehydrogenase 2 (ALDH2) were detected using western blotting. GSDME expression was detected by immunohistochemistry. RESULTS Compared with the Sham group, CLP mice showed high sepsis scores and obvious liver damage. However, in the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups, the sepsis scores were reduced and liver injury was alleviated. Compared with the Sham group, the serum ALT and AST activities, MDA and ROS levels, and IL-1β and TNF-α concentrations were increased in the CLP group, as well as the protein expression of cleaved caspase-3, GSDME-N, IL-1β, Cyt-c, and GSDME positive cells (P < 0.05). However, the expression levels of Bcl-2 and ALDH2 protein were decreased (P < 0.05). Compared with the CLP group, the CLP + Z-DEVD-FMK and CLP + Ac-DMLD-CMK groups showed low sepsis scores, ALT and AST activities, MDA and ROS levels, decreased IL-1β and TNF-α concentrations, and decreased expression of cleaved caspase-3, GSDME-N, IL-1β protein expression, and GSDME positive cells (P < 0.05). The expression levels of Bcl-2 and ALDH2 protein were increased (P < 0.05). CONCLUSION Apoptosis and GSDME-mediated pyroptosis are involved in the development of sepsis-induced hepatic injury. Inhibition of apoptosis and GSDME-mediated pyroptosis attenuates injury. ALDH2 plays a protective role by inhibiting apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Na Lu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Hongqian Qin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Zhaofei Meng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| | - Ying Yu
- Department of Physiology, Bengbu Medical University, Bengbu, 233000, Anhui, PR China.
| | - Qin Gao
- Department of Physiology, Bengbu Medical University, Bengbu, 233000, Anhui, PR China.
| | - Zhipeng Cheng
- School of Clinical Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, PR China
| | - Chuanmiao Liu
- National Clinical Research Center for Infectious Diseases, 287 Changhuai Road, Bengbu, 233004, Anhui, PR China.
| | - Junfeng Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, PR China; Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, PR China; Clinical Research Center for Respiratory Disease (tumor) in Anhui Province, PR China.
| |
Collapse
|
3
|
Luo Y, Li Y, He L, Tu H, Lin X, Zhao F, Huang Y, Wen M, Wang L, Yang Z. Xinyang tablet ameliorates sepsis-induced myocardial dysfunction by regulating Beclin-1 to mediate macrophage autophagy and M2 polarization through LncSICRNT1 targeting E3 ubiquitin ligase TRAF6. Chin Med 2023; 18:143. [PMID: 37919806 PMCID: PMC10621131 DOI: 10.1186/s13020-023-00832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE Xinyang Tablet (XYT) has emerged as a potential intervention to counter sepsis-induced myocardial dysfunction (SMID) by influencing macrophage autophagy and M2 polarization. This study aimed to unravel the underlying mechanism of XYT in sepsis-induced myocardial dysfunction (SIMD). METHODS A microarray analysis was employed to explore sepsis-related changes, and bioinformatics analysis was used to predict lncRNAs binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). This studio utilized SIMD mouse models induced by lipopolysaccharide (LPS) injection, followed by treatments involving varied doses of XYT, digoxin (positive control), or si-LncSICRNT1. After seven days, evaluations encompassing mouse hair/mental state/diet/weight were measured, and cardiac function via echocardiography were conducted. Myocardial tissue changes were observed using hematoxylin-eosin staining. Additionally, bone marrow-derived macrophages (BMDMs) subjected to LPS for M1 polarization were treated with oe-LncSICRNT1, si-TRAF6 and their negative control, XYT, or autophagy inhibitor 3-Methyladenine (3-MA) (positive control). RT-qPCR and Western blot analyses were employed to assess LncSICRNT1, TRAF6, Beclin-1, LC3II/LC3I, and p62 levels. Immunohistochemistry and flow cytometry were used for M1/M2 polarization markers, while enzyme-linked immunosorbent assay (ELISA) gauged inflammatory factor levels. Interaction between TRAF6 and LncSICRNT1 was probed using RNA pull-down and RNA immunoprecipitation (RIP) assays. RESULTS Chip analysis obtained 1463 differentially expressed lncRNAs, including LINC01550 (LncSICRNT1). Further prediction indicated that LncSICRNT1 was highly likely to directly bind to TRAF6. XYT treatment in LPS-induced SIMD mice led to notable enhancements in sleep/hair/diet/activity, increased weight/left ventricular end-diastolic diameter (LVEDd)/LV ejection fraction (LVEF)/LV fraction shortening (LVFS). These improvements were associated with elevated LncSICRNT1 expression and decreased TRAF6 protein levels, culminating in reduced myocardial inflammatory responses and improved cardiac function. Notably, XYT was found to suppress macrophage M1 polarization, while enhancing M2 polarization, ultimately benefitting cardiac function via LncSICRNT1 modulation. Furthermore, the study revealed LncSICRNT1 modulated Beclin-1 ubiquitination and restrained macrophage autophagy by targeting TRAF6 expression. CONCLUSION The study highlights XYT's potential to ameliorate LPS-induced SIMD by elevating LncSICRNT1 expression, influencing TRAF6 expression, and regulating Beclin-1 ubiquitination. These actions collectively inhibit macrophage autophagy and foster M1/M2 polarization, contributing to cardiac function improvement.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanmei Li
- Department of Rehabilitation Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Liwei He
- Department of Cardiology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Haitao Tu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfeng Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengli Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yusheng Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyong Wen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- President's Office, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Xu H, Ye W, Shi B. LncRNA MALAT1 Regulates USP22 Expression Through EZH2-Mediated H3K27me3 Modification to Accentuate Sepsis-Induced Myocardial Dysfunction. Cardiovasc Toxicol 2022; 22:813-830. [PMID: 35726125 DOI: 10.1007/s12012-022-09758-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA (lncRNA), has been confirmed to recruit enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) to regulate cardiomyocyte apoptosis in diabetic cardiomyopathy. However, whether the similar regulatory axis exists in sepsis-induced myocardial dysfunction (SIMD) has not been clearly established. The current study sought to define the mechanism governing MALAT1-mediated EZH2 in SIMD. MALAT1 was significantly upregulated in lipopolysaccharide-induced cardiomyocytes. Depletion of MALAT1 by caudal vein injection of small interfering RNA targeting MALAT1 alleviated myocardial injury in SIMD rats, restored cardiac function, reduced oxidative stress production and fibrosis, and inhibited inflammatory factors and apoptosis in myocardial tissues. Moreover, MALAT1 bound to EZH2 and promoted EZH2 activity in the nucleus of cardiomyocytes. EZH2 repressed ubiquitin-specific peptidase 22 (USP22) expression through H3K27me3 modification. EZH2 elevation aggravated the cardiac injury in SIMD rats, while USP22 upregulation inhibited the effect of EZH2, which reduced the cardiac injury in SIMD rats. Taken together, MALAT1 decreased USP22 expression by interacting with EZH2, thereby worsening SIMD, highlighting an attractive therapeutic strategy for SIMD.
Collapse
Affiliation(s)
- Hong Xu
- Department of Cardiovascular Division, Shandong Provincial Third Hospital, Jinan, 250031, Shandong, People's Republic of China
| | - Wei Ye
- Department of Respiratory Medicine, Shandong Provincial Third Hospital, Jinan, 250031, Shandong, People's Republic of China
| | - Baochang Shi
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, No. 12, WuYingShan Middle Road, Tianqiao District, Jinan, 250031, Shandong, People's Republic of China.
| |
Collapse
|
5
|
黄 毓, 张 共, 梁 欢, 曹 珍, 叶 红, 高 琴. [Inhibiting ferroptosis attenuates myocardial injury in septic mice: the role of lipocalin-2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:256-262. [PMID: 35365451 PMCID: PMC8983367 DOI: 10.12122/j.issn.1673-4254.2022.02.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore the contribution of ferroptosis to myocardial injury in mouse models of sepsis and the role lipocalin-2 (Lcn2) in ferroptosis. METHODS Adult male C57BL/6 mice were randomized equally into sham-operated group, cecal ligation and puncture (CLP)-induced sepsis group, and CLP + Fer-1 group where the mice received intraperitoneal injection of 5 mg/mL Fer-1 (5 mg/kg) 1 h before CLP. The left ventricular functions (including LVEF%, LVFS%, LVIDd and LVIDs) of the mice were assessed by echocardiography at 24 h after CLP. Myocardial injury in the mice was observed with HE staining, and the changes of myocardial ultrastructure and mitochondria were observed using transmission electron microscopy (TEM). Serum TNF-α level was measured with ELISA, and the changes of myocardial iron content were detected using tissue iron kit. The protein expressions of myocardial Lcn2, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) were determined with Western blotting. RESULTS The septic mice showed significantly decreased LVEF%, LVFS% and LVIDd and increased LVIDs at 24 h after CLP (P < 0.05), and these changes were significantly improved by Fer-1 treatment. Sepsis caused obvious myocardial pathologies and changes in myocardial ultrastructure and mitochondria, which were significantly improved by Fer-1 treatment. Fer-1 treatment also significantly ameliorated sepsis-induced elevations of serum TNF-α level, myocardial tissue iron content, and Lcn2 protein expression and the reduction of GPX4 and FSP1 protein expression levels (P < 0.05). CONCLUSION GPX4- and FSP1-mediated ferroptosis are involved in myocardial injury in mice with CLP-induced sepsis, and inhibition of ferroptosis can attenuate septic myocardial injury, in which Lcn2 may play a role.
Collapse
Affiliation(s)
- 毓慧 黄
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 共鹏 张
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 欢 梁
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 珍珍 曹
- 蚌埠医学院第一附属医院呼吸与危重症医学科,安徽 蚌埠 233000Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 红伟 叶
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - 琴 高
- 蚌埠医学院生理学教研室,安徽 蚌埠 233000Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|