1
|
Yang J, Song Y, Xu S, Ge S, Haiwen Z. CircHLA-C: A significantly upregulated circRNA co-existing in oral leukoplakia and oral lichen planus. Organogenesis 2023; 19:2234504. [PMID: 37531467 PMCID: PMC10399473 DOI: 10.1080/15476278.2023.2234504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oral leukoplakia (OLK) and oral lichen planus (OLP) are common precancerous lesions of the oral mucosa. The role of circular RNAs (circRNAs) in OLK and OLP is unclear. The aim of this study was to evaluate the circRNA expression profiles of OLK and OLP, and further explore the potential role of circRNAs in the pathogenesis of these two diseases. METHODS High throughput sequencing technology was performed to detect the differentially expressed circRNA in OLK (n = 6), OLP (n = 6), oral squamous cell carcinoma (n = 6), and normal oral mucosa tissues (n = 6). Expression of selected circRNAs was validated by qRT-PCR, enzyme tolerance assay, and Sanger sequencing. Expanded sample size validation was done in 20 tissue pairs. The biological processes and signal pathways involved in differential circRNA were analyzed by GO and KEGG enrichment. TargetScan and MiRanda were used to predict miRNAs downstream of circRNA and draw competitive endogenous RNA network diagram. RESULTS Forty-nine circRNAs were significantly altered in OLK and OLP, including 30 upregulated and 19 downregulated circRNAs. The five selected circRNAs were validated by qRT-PCR, Sanger sequencing, and RNase R assay. GO and KEGG analyses indicated that the upregulated circHLA-C may be involved in the biological process of immune function of OLK and OLP. Bioinformatics analysis indicated that circHLA-C may be involved in the progression of OLK and OLP as a ceRNA. In validation with expanded sample size, PCR results showed that circHLA-C expression was significantly upregulated in OLK and OLP. ROC analysis indicated that circHLA-C has potential diagnostic value with good accuracy and specificity. CONCLUSION Our study revealed that circHLA-C is the most significantly upregulated circRNA co-existing in OLK and OLP, and we preliminarily discuss the role of circHLA-C in the etiopathogenesis and progression of OLK and OLP.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuhan Song
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siming Xu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuyun Ge
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhou Haiwen
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong UniversityNational Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
3
|
Georgaki M, Theofilou VI, Pettas E, Stoufi E, Younis RH, Kolokotronis A, Sauk JJ, Nikitakis NG. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:566-579. [PMID: 34518141 DOI: 10.1016/j.oooo.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
The pathogenesis of oral cancer is a complex and multifactorial process that requires a deep understanding of the underlying mechanisms involved in the development and progress of malignancy. The ever-improving comprehension of the diverse molecular characteristics of cancer, the genetic and epigenetic alterations of tumor cells, and the complex signaling pathways that are activated and frequently cross talk open up promising horizons for the discovery and application of diagnostic molecular markers and set the basis for an era of individualized management of the molecular defects underlying and governing oral premalignancy and cancer. The purpose of this article is to review the key molecular concepts that are implicated in oral carcinogenesis, especially focusing on oral squamous cell carcinoma, and to review selected biomarkers that play a substantial role in controlling the so-called "hallmarks of cancer," with special reference to recent advances that shed light on their deregulation during the different steps of oral cancer development and progression.
Collapse
Affiliation(s)
- Maria Georgaki
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Ionas Theofilou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Efstathios Pettas
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleana Stoufi
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John J Sauk
- Professor Emeritus and Dean Emeritus, University of Louisville, Louisville, KY, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Harper KL, Mottram TJ, Whitehouse A. Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers (Basel) 2021; 13:4180. [PMID: 34439334 PMCID: PMC8391132 DOI: 10.3390/cancers13164180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The majority of RNAs transcribed from the human genome have no coding capacity and are termed non-coding RNAs (ncRNAs). It is now widely accepted that ncRNAs play key roles in cell regulation and disease. Circular RNAs (circRNAs) are a form of ncRNA, characterised by a closed loop structure with roles as competing endogenous RNAs (ceRNAs), protein interactors and transcriptional regulators. Functioning as key cellular regulators, dysregulated circRNAs have a significant impact on disease progression, particularly in cancer. Evidence is emerging of specific circRNAs having oncogenic or tumour suppressive properties. The multifaceted nature of circRNA function may additionally have merit as a novel therapeutic target, either in treatment or as a novel biomarker, due to their cell-and disease-state specific expression and long-term stability. This review aims to summarise current findings on how circRNAs are dysregulated in cancer, the effects this has on disease progression, and how circRNAs may be targeted or utilised as future potential therapeutic options.
Collapse
Affiliation(s)
| | | | - Adrian Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.L.H.); (T.J.M.)
| |
Collapse
|