1
|
Luan S, Xie R, Yang Y, Xiao X, Zhou J, Li X, Fang P, Zeng X, Yu X, Chen M, Gao H, Yuan Y. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. SMALL 2022; 18:e2200115. [PMID: 35261151 DOI: 10.1002/smll.202200115] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Radiotherapy and chemotherapy are limited by insufficient therapeutic efficacy of low-dose radiation and nonspecific drug biodistribution. Herein, an acid-responsive aggregated nanosystem (AuNPs-D-P-DA) loaded with doxorubicin (DOX) is designed for radiosensitization and synergistic chemoradiotherapy. In response to the acid microenvironment of esophageal cancer (EC), small-sized AuNPs-D-P-DA forms large-sized gold nanoparticle (AuNPs) aggregates in tumor tissues to hinder the backflow of AuNPs to the circulation, resulting in enhanced tumor accumulation and retention. Simultaneously, the AuNPs-based radiosensitization is significantly improved because of the high concentration and large size of intratumoral AuNPs, while DOX are delivered and released specifically into tumor cells triggered by the acid microenvironment for chemo-radio synergistic therapy. Acid-responsive AuNPs exacerbate radiation-induced DNA damage, cell apoptosis, cell cycle arrest, and low colony formation ability in vitro and enhance anti-tumor efficacy in vivo compared to un-responsive control. When combined with acid-responsive DOX, the therapeutic efficacy of the formulation is further improved by their synergistic effect. After the treatment of acid-responsive AuNPs plus radiotherapy, fatty acid metabolism is reprogrammed in xenograft models, which provides potential targets for further improvement of radiosensitization. In summary, the acid-responsive AuNPs-D-P-DA nanosystem leverages the radio- and chemotherapeutic synergies of AuNPs-sensitized X-ray irradiation and acid-responsive DOX in the treatment of EC.
Collapse
Affiliation(s)
- Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangrong Yu
- Department of Radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, 519000, P. R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|