1
|
Chi J, Jiao Q, Li YZ, Zhang ZY, Li GY. Animal models as windows into the pathogenesis of myopia: Illuminating new directions for vision health. Biochem Biophys Res Commun 2024; 733:150614. [PMID: 39276692 DOI: 10.1016/j.bbrc.2024.150614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The incidence of myopia, particularly high myopia, is increasing annually. Myopia has gradually become one of the leading causes of global blindness and is a considerable public-health concern. However, the pathogenesis of myopia remains unclear, and exploring the mechanism underlying myopia has become an urgent scientific priority. Creating animal models of myopia is important for studying the pathogenesis of refractive errors. This approach allows researchers to study and analyze the pathogenesis of myopia from aspects such as changes in refractive development, pathological changes in eye tissue, and molecular pathways related to myopia. This review summarizes the examples of animal models, methods of inducing myopia experimentally, and molecular signaling pathways involved in developing myopia-induced animal models. This review provides solid literature for researchers in the field of myopia prevention and control. It offers guidance in selecting appropriate animal models and research methods to fit their research objectives. By providing new insights and a theoretical basis for studying mechanisms of myopia, we detail how elucidated molecular pathways can be exploited to translate into safe and effective measures for myopia prevention and control.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, PR China
| | - Qing Jiao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, PR China
| | - Yun-Zhi Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, PR China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, PR China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130042, PR China.
| |
Collapse
|
2
|
Musa M, Enaholo E, Bale BI, Salati C, Spadea L, Zeppieri M. Retinoscopes: Past and present. World J Methodol 2024; 14:91497. [PMID: 39310243 PMCID: PMC11230066 DOI: 10.5662/wjm.v14.i3.91497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Retinoscopy is arguably the most important method in the eye clinic for diagnosing and managing refractive errors. Advantages of retinoscopy include its non-invasive nature, ability to assess patients of all ages, and usefulness in patients with limited cooperation or communication skills. AIM To discuss the history of retinoscopes and examine current literature on the subject. METHODS A search was conducted on the PubMed and with the reference citation analysis (https://www.referencecitationanalysis.com) database using the term "Retinoscopy," with a range restricted to the last 10 years (2013-2023). The search string algorithm was: "Retinoscopy" (MeSH Terms) OR "Retinoscopy" (All Fields) OR "Retinoscopes" (All Fields) AND [(All Fields) AND 2013: 2023 (pdat)]. RESULTS This systematic review included a total of 286 records. Publications reviewed iterations of the retinoscope into autorefractors, infrared photo retinoscope, television retinoscopy, and the Wifi enabled digital retinoscope. CONCLUSION The retinoscope has evolved significantly since its discovery, with a significant improvement in its diagnostic capabilities. While it has advantages such as non-invasiveness and broad applicability, limitations exist, and the need for skilled interpretation remains. With ongoing research, including the integration of artificial intelligence, retinoscopy is expected to continue advancing and playing a vital role in eye care.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
3
|
Zhang X, Wang X, Zhu J, Chen K, Ullah R, Tong J, Shen Y. Retinal VIP-amacrine cells: their development, structure, and function. Eye (Lond) 2024; 38:1065-1076. [PMID: 38066110 PMCID: PMC11009269 DOI: 10.1038/s41433-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Amacrine cells (ACs) are the most structurally and functionally diverse neuron type in the retina. Different ACs have distinct functions, such as neuropeptide secretion and inhibitory connection. Vasoactive intestinal peptide (VIP) -ergic -ACs are retina gamma-aminobutyric acid (GABA) -ergic -ACs that were discovered long ago. They secrete VIP and form connections with bipolar cells (BCs), other ACs, and retinal ganglion cells (RGCs). They have a specific structure, density, distribution, and function. They play an important role in myopia, light stimulated responses, retinal vascular disease and other ocular diseases. Their significance in the study of refractive development and disease is increasing daily. However, a systematic review of the structure and function of retinal VIP-ACs is lacking. We discussed the detailed characteristics of VIP-ACs from every aspect across species and providing systematic knowledge base for future studies. Our review led to the main conclusion that retinal VIP-ACs develop early, and although their morphology and distribution across species are not the same, they have similar functions in a wide range of ocular diseases based on their function of secreting neuropeptides and forming inhibitory connections with other cells.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiru Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Rahim Ullah
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Hui J, Nie X, Wei P, Deng J, Kang Y, Tang K, Han G, Wang L, Liu W, Han Q. 3D printed fibroblast-loaded hydrogel for scleral remodeling to prevent the progression of myopia. J Mater Chem B 2024; 12:2559-2570. [PMID: 38362614 DOI: 10.1039/d3tb02548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pathologic myopia has seriously jeopardized the visual health of adolescents in the past decades. The progression of high myopia is associated with a decrease in collagen aggregation and thinning of the sclera, which ultimately leads to longer eye axis length and image formation in front of the retina. Herein, we report a fibroblast-loaded hydrogel as a posterior scleral reinforcement (PSR) surgery implant for the prevention of myopia progression. The fibroblast-loaded gelatin methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel was prepared through bioprinting with digital light processing (DLP). The introduction of the PEGDA component endowed the GelMA-PEGDA hydrogel with a high compression modulus for PRS surgery. The encapsulated fibroblasts could consistently maintain a high survival rate during 7 days of in vitro incubation, and could normally secrete collagen type I. Eventually, both the hydrogel and fibroblast-loaded hydrogel demonstrated an effective shortening of the myopic eye axis length in a guinea pig model of visual deprivation over three weeks after implantation, and the sclera thickness of myopic guinea pigs became significantly thicker after 4 weeks, verifying the success of sclera remodeling and showing that myopic progression was effectively controlled. In particular, the fibroblast-loaded hydrogel demonstrated the best therapeutic effect through the synergistic effect of cell therapy and PSR surgery.
Collapse
Affiliation(s)
- Jingwen Hui
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Pinghui Wei
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jie Deng
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yuanzhe Kang
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Kexin Tang
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Guoge Han
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Quanhong Han
- Tianjin Eye Hospital, No. 4 Gansu Road, Heping District, Tianjin 300020, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Wu Y, Luo X, Feng Y, Yang J, Fan H, Cen X, Li W. Comparison of the accuracy of axial length measurement by different imaging methods in Sprague Dawley rats. Front Neurosci 2023; 16:1106904. [PMID: 36685229 PMCID: PMC9854123 DOI: 10.3389/fnins.2022.1106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Background Obtaining accurate axial length (AL) is very important for the establishment of animal models of myopia. The purpose of this study is to compare the accuracy of Quantel A-B scan, OD-1 A scan, and vernier caliper in measuring AL in Sprague Dawley (SD) rats. Methods In total, 60 5-week-old SD rats were divided into female rat group (n = 30) and male rat group (n = 30). Quantel A-B scan and OD-1 A scan were, respectively, used to measure the AL of both eyes of each living rat, and vernier caliper was used to measure the anterior-posterior diameter of each rat's eyeball. Besides, the correlation between refractive error (RE) and AL measured by different instruments was evaluated, and the accuracy of the three measurement methods was compared according to gender and left/right eyes. Results There were significant differences in AL and diopter of SD rats at the same age (p < 0.05). the AL of male rats was greater than that of female rats, while diopter (D) was the opposite; There was no significant difference in AL and D between left and right eyes in the same SD rats (p > 0.05); There were statistical differences among the three measurement methods (p < 0.05), AL measured by vernier caliper was the largest, followed by Quantel A-B scan, OD-1 A scan; Difference in AL between male and female was not statistically significant between the results obtained by Quantel A-B scan and vernier caliper (p > 0.05), but there were statistically significant differences between the other two measurement methods (p < 0.05). Conclusion Sex is the influencing factor of AL and RE. Imaging measurement can accurately measure the AL in living small rodents. Compared with OD-1 A scan, Quantel A-B scan may be more accurate.
Collapse
Affiliation(s)
- Yajun Wu
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China,Department of Ophthalmology, Shanghai Aier Eye Ophthalmology Hospital, Shanghai, China,Shanghai Aier Eye Institute, Shanghai, China
| | - Xiangdong Luo
- Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuliang Feng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China,Department of Ophthalmology, Shanghai Aier Eye Ophthalmology Hospital, Shanghai, China,Shanghai Aier Eye Institute, Shanghai, China
| | - Jiasong Yang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China,Department of Ophthalmology, Shanghai Aier Eye Ophthalmology Hospital, Shanghai, China,Shanghai Aier Eye Institute, Shanghai, China
| | - Hua Fan
- Department of Ophthalmology, Shanghai Aier Eye Ophthalmology Hospital, Shanghai, China,Shanghai Aier Eye Institute, Shanghai, China
| | - Xiaobo Cen
- WestChina-Frontier PharmaTech Co., Ltd., Chengdu, Sichuan, China,Xiaobo Cen,
| | - Wensheng Li
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China,Department of Ophthalmology, Shanghai Aier Eye Ophthalmology Hospital, Shanghai, China,Shanghai Aier Eye Institute, Shanghai, China,*Correspondence: Wensheng Li,
| |
Collapse
|