1
|
Hu Q, Qu W, Zhang T, Feng J, Dong X, Nie R, Chen J, Wang X, Peng C, Ke X. C1q/Tumor Necrosis Factor-Related Protein-9 Is a Novel Vasculoprotective Cytokine That Restores High Glucose-Suppressed Endothelial Progenitor Cell Functions by Activating the Endothelial Nitric Oxide Synthase. J Am Heart Assoc 2024; 13:e030054. [PMID: 38348774 PMCID: PMC11010095 DOI: 10.1161/jaha.123.030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of CardiologyFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Wan Qu
- Health Management CenterFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Tao Zhang
- Department of CardiologyFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jianyi Feng
- Department of CardiologyFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Xiaobian Dong
- Department of CardiologyFirst Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Ruqiong Nie
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and ElectrophysiologySun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Junyu Chen
- Department of CardiologyFuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat‐Sen Cardiovascular Hospital)ShenzhenChina
| | - Xiaoqing Wang
- Department of CardiologyFuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat‐Sen Cardiovascular Hospital)ShenzhenChina
| | - Changnong Peng
- Department of CardiologyFuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat‐Sen Cardiovascular Hospital)ShenzhenChina
| | - Xiao Ke
- Department of CardiologyFuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat‐Sen Cardiovascular Hospital)ShenzhenChina
| |
Collapse
|
2
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
3
|
Hu Q, Dong X, Zhang K, Song H, Li C, Zhang T, Feng J, Ke X, Li H, Chen Y, Nie R, Chen X, Liu Y. Fluid Shear Stress Ameliorates Prehypertension-Associated Decline in Endothelium-Reparative Potential of Early Endothelial Progenitor Cells. J Cardiovasc Transl Res 2022; 15:1049-1063. [PMID: 35391709 DOI: 10.1007/s12265-022-10235-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of prehypertension and shear stress on the reendothelialization potential of human early EPCs and explored its potential mechanisms. Early EPCs from the prehypertensive patients showed reduced migration and adhesion in vitro and demonstrated a significantly impaired in vivo reendothelialization capacity. Shear stress pretreatment markedly promoted the in vivo reendothelialization capacity of EPCs. Although basal CXCR4 expression in early EPCs from prehypertensive donors was similar to that from healthy control, SDF-1-induced phosphorylation of CXCR4 was lower in prehypertensive EPCs. Shear stress up-regulated CXCR4 expression and increased CXCR4 phosphorylation, and restored the SDF-1/CXCR4-dependent JAK-2 phosphorylation in prehypertensive EPCs. CXCR4 knockdown or JAK-2 inhibitor treatment prevents against shear stress-induced increase in the migration, adhesion and reendothelialization capacity of the prehypertensive EPCs. Collectively, CXCR4 receptor profoundly modulates the reendothelialization potential of early EPCs. The abnormal CXCR4-mediated JAK-2 signaling may contribute to impaired functions of EPCs from patients with prehypertension.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiaobian Dong
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Kun Zhang
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huangfeng Song
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Cuizhi Li
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Tao Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Jianyi Feng
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, 518057, China
| | - Hairui Li
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Yangxin Chen
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruqiong Nie
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoming Chen
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China.
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China.
| |
Collapse
|
4
|
Qian J, Shen Q, Yan CX, Yin H, Cao X, Lin ZH, Cai YF, Liu H. Atorvastatin improves bone marrow endothelial progenitor cell function from patients with immune-related hemocytopenia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1142. [PMID: 34430583 PMCID: PMC8350688 DOI: 10.21037/atm-21-2459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Background Immune-related hemocytopenia (IRH) is a type of autoimmune disease that targets bone marrow hematopoietic cells. This study investigated the influence of atorvastatin on the functional aspects of bone marrow endothelial progenitor cells (BM EPCs) in IRH patients. Methods BM EPCs were isolated from 15 patients with IRH and 20 normal controls. The isolated BM EPCs were characterized by flow cytometry. Cell counting kit-8, flow cytometry, and Transwell migration assays were used to determine the proliferation, apoptosis, and migration of BM EPCs, respectively. Protein levels were determined by western blot assay. Results The BM EPCs isolated from IRH patients showed reduced proliferation, increased apoptosis, and attenuated migratory ability compared to those from normal controls. Western blot analysis showed that the protein level of p-p38 was significantly increased, while that of Phosphorylated protein kinase B (p-AKT) was significantly decreased in the BM EPCs from IRH patients, compared to BM EPCs from healthy subjects. Cell proliferation and migration were significantly enhanced by atorvastatin, recombinant human thrombopoietin, and SB20358 compared to the untreated BM EPCs from IRH patients. Atorvastatin, Recombinant human thrombopoietin (TPO), and SB20358 treatment significantly suppressed the protein levels of p-p38 protein, but increased those of p-AKT in BM EPCS from IRH patients. Conclusions In summary, atorvastatin increases the number and function of BM EPCs in IRH patients by regulating the p38 and AKT signaling pathways.
Collapse
Affiliation(s)
- Juan Qian
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qian Shen
- Department of Oncology, Nantong Oncology Hospital, Nantong, China
| | | | - Hong Yin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zeng-Hua Lin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi-Feng Cai
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|