1
|
Huzum RM, Hînganu MV, Huzum B, Hînganu D. Advances in Molecular Research on Hip Joint Impingement-A Vascular Perspective. Biomolecules 2024; 14:784. [PMID: 39062498 PMCID: PMC11275018 DOI: 10.3390/biom14070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
With the rise in longevity within the population, medicine continues to encounter fresh hurdles necessitating prompt actions, among which are those associated with hip joint aging. Age-related arthropathies encompass damage to bones' articulating extremities and their supporting structures, such as articular cartilage, and alterations in the quantity and quality of synovial fluid. This study aims to summarize the biomolecular methods of hip joint evaluation focused on its vascularization, using data correlated with biomolecular research on other joints and tissues, in order to reach an objective opinion of the study prospects in this field. Following a retrospective study on most modern biomolecular research methods on the synovium, the capsule, and the articular cartilage of the hip joint, we have hereby concretized certain future research directions in this field that will improve the qualitative and morphofunctional management of the hip joint at an advanced age, even within population categories at risk of developing various degenerative joint pathologies.
Collapse
Affiliation(s)
- Riana Maria Huzum
- Department of Radiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Marius Valeriu Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Bogdan Huzum
- Department of Orthopedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Delia Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| |
Collapse
|
2
|
Zhan J, Peng C, Liu Y, Bi Z, Lu G, Hao S, Tong Y, Zhang G. Predictive Value of Serum microRNA-29b-3p in Recurrence of Atrial Fibrillation After Radiofrequency Catheter Ablation. Clin Interv Aging 2024; 19:715-725. [PMID: 38716143 PMCID: PMC11075679 DOI: 10.2147/cia.s450292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 06/05/2024] Open
Abstract
Objective Atrial fibrillation (AF) is a common arrhythmia. This study explored serum miR-29b-3p expression in AF patients and its value in predicting AF recurrence after radiofrequency catheter ablation (RFCA). Methods Totally 100 AF patients who underwent RFCA were enrolled, with 100 individuals without AF as controls. Serum miR-29b-3p expression in participants was determined using RT-qPCR. The correlation between miR-29b-3p and atrial fibrosis markers (FGF-21/FGF-23) was assessed by Pearson analysis. The diagnostic efficacy of serum miR-29b-3p and FGF-21/FGF-23 in predicting AF recurrence after RFCA was analyzed by the receiver operating characteristic (ROC) curves. The Kaplan-Meier method was adopted to evaluate the effect of miR-29b-3p expression on the incidence of AF recurrence after RFCA. The independent risk factors for AF recurrence after RFCA were analyzed by logistic regression analysis. Results Serum miR-29b-3p was poorly expressed in AF patients. After RFCA, AF patients showed elevated serum miR-29b-3p expression. Serum miR-29b-3p expression in AF patients negatively correlated with serum FGF-21 and FGF-23 concentrations. The cut-off values of serum miR-29b-3p, FGF-21, and FGF-23 in identifying AF recurrence were 0.860 (sensitivity: 100.00%, specificity: 39.71%), 222.2 pg/mL (sensitivity: 96.88%, specificity: 32.35%) and 216.3 ng/mL (sensitivity: 53.13%, specificity: 70.59%), respectively. Patients with low miR-29b-3p expression had a significantly higher incidence of AF recurrence than patients with high miR-29b-3p expression. Serum miR-29b-3p expression was one of the independent risk factors for AF recurrence after RFCA. Conclusion Low miR-29b-3p expression in AF patients has certain predictive values and is one of the independent risk factors for AF recurrence after RFCA.
Collapse
Affiliation(s)
- Junwei Zhan
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Chengfei Peng
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Yuxin Liu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Zhanhua Bi
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Guoxiu Lu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| |
Collapse
|
3
|
Lv X, Nuertai Y, Wang Q, Zhang D, Hu X, Liu J, Zeng Z, Huang R, Huang Z, Zhao Q, Li W, Zhang Z, Gao L. Multilevel Pedicle Subtraction Osteotomy for Correction of Thoracolumbar Kyphosis in Ankylosing Spondylitis: Clinical Effect and Biomechanical Evaluation. Neurospine 2024; 21:231-243. [PMID: 38317554 PMCID: PMC10992630 DOI: 10.14245/ns.2347118.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To compare the clinical outcomes and biomechanical characteristics of 1-, 2-, and 3-level pedicle subtraction osteotomy (PSO), and establish selection criteria based on preoperative radiographic parameters. METHODS Patients undergone PSO to treat ankylosing spondylitis from February 2009 to May 2019 in Sun Yat-sen Memorial Hospital of Sun Yat-sen University were enrolled. According to the quantity of osteotomy performed, the participants were divided into group A (1-level PSO, n = 24), group B (2-level PSO, n = 19), and group C (3-level PSO, n = 11). Clinical outcomes were assessed before surgery and at the final follow-up. Comparisons of the radiographic parameters and quality-of-life indicators were performed among and within these groups, and the selection criteria were established by regression. Finite element analysis was conducted to compare the biomechanical characteristics of the spine treated with different quantity of osteotomies under different working conditions. RESULTS Three-level PSO improved the sagittal parameters more significantly, but resulted in longer operative time and greater blood loss (p < 0.05). Greater stress was found in the proximal screws and proximal junction area of the vertebra in the model simulating 1-level PSO. Larger stress of screws and vertebra was observed at the distal end in the model simulating 3-level PSO. CONCLUSION Multilevel PSO works better for larger deformity correction than single-level PSO by allowing greater sagittal parameter correction and obtaining a better distribution of stress in the hardware construct, although with longer operation time and greater blood loss. Three-level osteotomy is recommended for the patients with preoperative of global kyphosis > 85.95°, T1 pelvic angle > 62.3°, sagittal vertical alignment > 299.55 mm, and pelvic tilt+ chin-brow vertical angle > 109.6°.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yelidana Nuertai
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Wang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xumin Hu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiabao Liu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Zeng
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renyuan Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiancheng Zhao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenpeng Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangbin Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Liu Z, Cai M, Ke H, Deng H, Ye W, Wang T, Chen Q, Cen S. Fibroblast Insights into the Pathogenesis of Ankylosing Spondylitis. J Inflamm Res 2023; 16:6301-6317. [PMID: 38149115 PMCID: PMC10750494 DOI: 10.2147/jir.s439604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose of the Review Emerging evidence has shown that ankylosing spondylitis fibroblasts (ASFs) act as crucial participants in inflammation and abnormal ossification in ankylosing spondylitis (AS). This review examines the investigations into ASFs and their pathological behavior, which contributes to inflammatory microenvironments and abnormal bone formation. The review spans the period from 2000 to 2023, with a primary focus on the most recent decade. Additionally, the review provides an in-depth discussion on studies on ASF ossification at the cellular level. Recent Findings ASFs organize immune functions by recruiting immune cells and influencing their differentiation and activation, thus mediate the inflammatory response in the early phase of disease. ASFs promote joint destruction at sites of cartilage and actively promote abnormal ossification by recruiting osteoblasts, differentiation into myofibroblasts or ossification directly. Many signaling pathways and cytokines such as Wnt signaling and BMP/TGF-β signaling are involved in ASF ossification. Summary ASFs play a key role in AS inflammation and osteogenesis. Further studies are required to elucidate molecular mechanisms behind that and provide new targets and directions for AS diagnosis and treatment from a new perspective of fibroblasts.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Mingxi Cai
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Haoteng Ke
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Huazong Deng
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Weijia Ye
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Tao Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Qifan Chen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Shuizhong Cen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
5
|
Lai J, Wang Z, Zhou H, Li P, Lu H, Tu T. Low-Intensity Nanosecond Pulsed Electric Field Accelerates Osteogenic Transformation of Human Dermal Fibroblasts by Enhancing Cell Pluripotency. Cell Reprogram 2023; 25:300-309. [PMID: 38011697 DOI: 10.1089/cell.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Autologous human fibroblasts have the potential to differentiate into the osteogenic lineage under specific conditions and can be utilized for bone regeneration. However, their efficiency is currently unsatisfactory. Recently, low-intensity nanosecond pulsed electric field (nsPEF) stimulation has been demonstrated to enhance cell pluripotency by activating epigenetic regulatory pathways. In this study, human dermal fibroblasts were exposed to different intensities of nsPEF to assess whether these exposures resulted in changes in proliferation rate, calcium salt deposition, and expression of differentiation-related markers in different experimental groups. The results showed a significant increase in cell proliferation, pluripotency, bone marker expression, and osteogenic differentiation efficiency when stimulating cells with 5 kV/cm of nsPEF. However, cell proliferation and differentiation significantly decreased at 25 kV/cm. Additionally, the proliferation and efficiency of osteogenic differentiation were reduced when the nsPEF intensity was increased to 50 kV/cm. Treatment with a 5 kV/cm of nsPEF led to increased and concentrated expression of Yes-Associated Protein (YAP) in the nucleus. These observations suggest that human dermal fibroblasts possess a heightened potential to differentiate into osteogenic cells when activated with nsPEF at 5 kV/cm. Consequently, the nsPEF strengthening strategy shows promise for fibroblast-based tissue-engineered bone repair research.
Collapse
Affiliation(s)
- Jingtian Lai
- Plastic & Esthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Department of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zewei Wang
- Plastic & Esthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Department of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Pengfei Li
- Plastic & Esthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tian Tu
- Plastic & Esthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Lu L, Sun S, Li H, Xie Y. Functional mechanism of miR-92b-3p in osteogenic differentiation of fibroblasts in patients with ankylosing spondylitis via the TOB1/BMP/Smad pathway. J Orthop Surg Res 2023; 18:402. [PMID: 37268992 DOI: 10.1186/s13018-023-03850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory arthritis. Upregulation of microRNA (miR)-92b-3p is associated with enhanced osteoblastic differentiation. The current study sought to investigate the functional mechanism of miR-92b-3p in osteogenic differentiation of AS fibroblasts. METHODS First, fibroblasts were isolated from AS and non-AS patients and cultured. Next, cell morphology was observed, cell proliferation was assessed and the vimentin expression pattern was determined. Alkaline phosphatase (ALP) activity and levels of osteogenic markers RUNX2, OPN, OSX, and COL I were additionally measured, followed by determination of miR-92b-3p and TOB1 levels. The binding site of miR-92b-3p and TOB1 was predicted, and their target relationship was validated. Lastly, miR-92b-3p inhibitor, si-TOB1, and the BMP/Smad signaling pathway inhibitor LDN193189 were delivered into AS fibroblasts to evaluate the osteogenic differentiation of AS fibroblasts and the activation of the BMP/Smad pathway. RESULTS miR-92b-3p was highly expressed in AS fibroblasts. AS fibroblasts showed enhanced osteogenic differentiation and proliferation, while inhibition of miR-92b-3p suppressed osteogenic differentiation and proliferation of AS fibroblasts. miR-92b-3p targeted TOB1, and TOB1 was poorly expressed in AS fibroblasts. The concurrent downregulation of TOB1 and inhibition of miR-92b-3p elevated the levels of RUNX2, OPN, OSX, and COL I and ALP activity and further enhanced the proliferation of AS fibroblasts. The BMP/Smad pathway was activated in AS fibroblasts. Silencing miR-92b-3p could inhibit the activation of the BMP/Smad pathway by upregulating TOB1. Inhibition of the BMP/Smad pathway reduced the number of calcified nodules and hindered the osteogenic differentiation and proliferation of AS fibroblasts. CONCLUSION Our findings highlighted that silencing miR-92b-3p inhibited the osteogenic differentiation and proliferation of AS fibroblasts by upregulation of TOB1 and inhibition of the BMP/Smad pathway.
Collapse
Affiliation(s)
- Liansong Lu
- Department of Spinal Surgery, Ningbo No.6 Hospital, 1059 East Zhongshan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Shaohua Sun
- Department of Spinal Surgery, Ningbo No.6 Hospital, 1059 East Zhongshan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Haoji Li
- Department of Spinal Surgery, Ningbo No.6 Hospital, 1059 East Zhongshan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yingzhi Xie
- Department of Medical Image, Ningbo No.6 Hospital, 1059 East Zhongshan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| |
Collapse
|
7
|
Jin Q, Liu Y, Zhang Z, Wen X, Chen Z, Tian H, Kang Z, Wu X, Xu H. MYC promotes fibroblast osteogenesis by regulating ALP and BMP2 to participate in ectopic ossification of ankylosing spondylitis. Arthritis Res Ther 2023; 25:28. [PMID: 36803548 PMCID: PMC9942334 DOI: 10.1186/s13075-023-03011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Ectopic ossification is an important cause of disability in patients with ankylosing spondylitis (AS). Whether fibroblasts can transdifferentiate into osteoblasts and contribute to ossification remains unknown. This study aims to investigate the role of stem cell transcription factors (POU5F1, SOX2, KLF4, MYC, etc.) of fibroblasts in ectopic ossification in patients with AS. METHODS Primary fibroblasts were isolated from the ligaments of patients with AS or osteoarthritis (OA). In an in vitro study, primary fibroblasts were cultured in osteogenic differentiation medium (ODM) to induce ossification. The level of mineralization was assessed by mineralization assay. The mRNA and protein levels of stem cell transcription factors were measured by real-time quantitative PCR (q-PCR) and western blotting. MYC was knocked down by infecting primary fibroblasts with lentivirus. The interactions between stem cell transcription factors and osteogenic genes were analysed by chromatin immunoprecipitation (ChIP). Recombinant human cytokines were added to the osteogenic model in vitro to evaluate their role in ossification. RESULTS We found that MYC was elevated significantly in the process of inducing primary fibroblasts to differentiate into osteoblasts. In addition, the level of MYC was remarkably higher in AS ligaments than in OA ligaments. When MYC was knocked down, the expression of the osteogenic genes alkaline phosphatase (ALP) and bone morphogenic protein 2 (BMP2) was decreased, and the level of mineralization was reduced significantly. In addition, the ALP and BMP2 were confirmed to be the direct target genes of MYC. Furthermore, interferon-γ (IFN-γ), which showed high expression in AS ligaments, was found to promote the expression of MYC in fibroblasts in the process of ossification in vitro. CONCLUSIONS This study demonstrates the role of MYC in ectopic ossification. MYC may act as the critical bridge that links inflammation with ossification in AS, thus providing new insights into the molecular mechanisms of ectopic ossification in AS.
Collapse
Affiliation(s)
- Qianmei Jin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yaoyang Liu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xingzhu Wen
- Department of General Surgery, 72nd Group Army Hospital, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ziqiang Chen
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Fang Y, Liu J. Novel regulatory role of non-coding RNAs in ankylosing spondylitis. Front Immunol 2023; 14:1131355. [PMID: 36911689 PMCID: PMC9998703 DOI: 10.3389/fimmu.2023.1131355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Ankylosing spondylitis (AS) is a type of arthritis that primarily affects the spine and involves disorders of the immune and skeletal systems. However, the exact pathogenesis of AS is not fully understood. Non-coding RNAs (ncRNAs), particularly, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs) and their interactions have been shown to influence many biological processes such as inflammatory responses, osteogenic differentiation and apoptosis, pyroptosis, and proliferation. In addition, ncRNAs reflect the disease activity of AS. In this review, we discuss the regulatory roles of ncRNAs in AS cell functions (inflammatory responses, cellular osteogenic differentiation and apoptosis, pyroptosis, and proliferation) and their potential applications in AS diagnosis and treatment. Understanding the role of ncRNAs in the pathogenesis of AS will lay the foundation for exploring potential new therapeutic approaches for AS.
Collapse
Affiliation(s)
- Yanyan Fang
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, China
| | - Jian Liu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, China.,Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Zeng Y, Wang T, Liu Y, Luo T, Li Q, He Y, Fang M, He R. Wnt and Smad signaling pathways synergistically regulated the osteogenic differentiation of fibroblasts in ankylosing spondylitis. Tissue Cell 2022; 77:101852. [DOI: 10.1016/j.tice.2022.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
|
10
|
HDAC1 regulates inflammation and osteogenic differentiation of ankylosing spondylitis fibroblasts through the Wnt-Smad signaling pathway. J Orthop Surg Res 2022; 17:343. [PMID: 35794630 PMCID: PMC9258155 DOI: 10.1186/s13018-022-03224-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/18/2022] [Indexed: 11/10/2022] Open
Abstract
Ankylosing spondylitis (AS) is a refractory autoimmune disease, whose typical pathology is the development of inflammation to ossification and ankylosis. Histone deacetylase 1 (HDAC1) is considered to be a key factor involved in inflammatory gene transduction, but its role in AS remains unclear. The purpose of this study was to explore the role and possible mechanism of HDAC1 in AS based on the Wnt-Smad pathway. Fibroblasts were isolated from hip synovial tissues of AS patients, adeno-associated virus (AAV) was used to regulate the expression of HDAC1, DKK-1 and SIS3 was used to inhibit Wnt and Smad, respectively. The expressions of Wnt-Smad pathway-related proteins were analyzed by WB, and the TRP ion channel proteins were analyzed by immunofluorescence and WB. The proliferation of AS fibroblasts was detected by CCK-8, the expression of inflammatory cytokines was detected by ELISA, and the effects of HDAC1 on osteogenic differentiation of AS fibroblasts were investigated by alkaline phosphatase (ALP) activity, intracellular calcium concentration, mineralization and osteogenic proteins expressions. Results showed that HDAC1 significantly affected the protein expressions of the Wnt-Smad pathway in AS fibroblasts, and Wnt inhibitor DKK-1 and Smad3 inhibitor SIS3 could significantly reverse the effect of HDAC1 on the Wnt-Smad pathway. In addition, HDAC1 significantly activated the TRP ion channel and promoted the proliferation, inflammatory response and osteogenic differentiation of AS fibroblasts. DKK-1 or SIS3 treatment significantly inhibit the effect of HDAC-1 on AS fibroblasts, suggesting that the Wnt-Smad pathway is involved in the regulation of AS by HDAC1. In conclusion, HDAC1 promotes the proliferation, inflammatory response and osteogenic differentiation of AS fibroblasts through the Wnt-Smad pathway.
Collapse
|
11
|
Zhang D, Li B, Guo R, Wu J, Yang C, Jiang X, Zhang C, Yan H, Zhao Q, Wang Z, Wang Q, Huang R, Zhang Z, Hu X, Gao L. RAB5C, SYNJ1, and RNF19B promote male ankylosing spondylitis by regulating immune cell infiltration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1011. [PMID: 34277811 PMCID: PMC8267299 DOI: 10.21037/atm-21-2721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Background This study aimed to identify the key genes related to male ankylosing spondylitis (AS) and to analyze the role of immune cell infiltration in the pathological process of this disease. Methods The AS dataset was downloaded from the Gene Expression Omnibus (GEO) public database, and the data of male healthy controls (M_HC) and male AS patients (M_AS) were extracted. R software was used to identify differentially expressed genes (DEGs). Functional and pathway enrichment analysis of the DEGs was performed. A protein-protein interaction (PPI) network was constructed, and the hub genes were screened out. All expression profile data were analyzed by weighted correlation network analysis (WGCNA) to screen out the hub genes, which were then intersected with the hub genes from the PPI network to obtain the key genes. Finally, the difference in immune cell infiltration in the two sets of samples was evaluated with CIBERSORT, and the correlation between the key genes and infiltrating immune cells was analyzed. Results A total of 689 DEGs were obtained, of which 395 genes were up-regulated and 294 genes were down-regulated. Functional and pathway enrichment analysis showed that DEGs were mainly enriched in pathways related to immune response. Based on the PPI analysis, five clusters with high scores were selected. Through WGCNA, 14 gene modules were obtained. The green module with the highest correlation was selected and intersected with the cluster previously obtained to obtain three key genes, RAB5C, SYNJ1, and RNF19B. Immune infiltration analysis found that monocytes and gamma delta T cells may be involved in the process of AS. Also, RAB5C, SYNJ1, and RNF19B are all related to increased levels of monocytes and macrophages. Conclusions RAB5C, SYNJ1, and RNF19B are key DEGs expressed in M_AS and may play a role in the disease’s occurrence and development through regulating immune cell functions.
Collapse
Affiliation(s)
- Di Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Eighth Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Guo
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jionglin Wu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xumin Hu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|