1
|
Selvaraji S, Mosberger J, Fann DY, Lai MK, Hsian Chen CL, Arumugam TV. Unveiling the Therapeutic Promise of Epigenetics in Vascular Cognitive Impairment and Vascular Dementia. Aging Dis 2025:AD.2025.0010. [PMID: 39965251 DOI: 10.14336/ad.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease characterized by cognitive decline and memory deficits. Despite its significant prevalence and impact, the pathophysiology of VaD remains poorly understood, and current treatments are limited to symptom management. Emerging evidence highlights the importance of lifestyle-associated risk factors in VaD, emphasizing the role of gene-environment interactions, particularly in the realm of epigenetics. While preclinical studies using animal models have provided valuable insights into epigenetic mechanisms, the translatability of these findings to human clinical settings remains limited, and research into VaD-specific epigenetics is still in its infancy. This review aims to elucidate the intricate interplay between epigenetics and VaD, shedding light on potential therapeutic interventions rooted in epigenetic mechanisms. By synthesizing insights from existing literature, we also discuss the challenges and opportunities in translating preclinical findings into clinically viable treatments, underscoring the need for further research to bridge the gap between animal models and human applications.
Collapse
Affiliation(s)
- Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Jasmine Mosberger
- Research Laboratory of Electronics, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Mitchell Kp Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
2
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
3
|
Shi H, Zhang X, Si G, Jia H. Quality of the Evidence Supporting the Role of Acupuncture Interventions for Vascular Dementia. Neuropsychiatr Dis Treat 2023; 19:27-48. [PMID: 36627885 PMCID: PMC9826642 DOI: 10.2147/ndt.s389924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammation is an important pathogenesis of vascular dementia (VaD), and the regulatory effect of acupuncture on neuroinflammation has received extensive attention. There is conflicting evidence regarding the efficacy and safety of acupuncture for postpartum VaD. This overview aims to systematically evaluate systematic reviews/meta-analyses (SRs/MAs) of acupuncture on VaD. METHODS From the establishment of the electronic database to August 2022, search and identify SRs/MAs on acupuncture treatment for VaD. The Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2), the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020), and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system were used to evaluate the methodological, reporting, and evidence quality of the included SRs/MAs. RESULTS Twelve SRs/MAs were included in this research, and the quality of methodological, reporting, and evidence for these SRs/MAs were not satisfactory. The shortcomings of these SRs/MAs mainly include lack of protocol registration, incomplete literature search, missing list of excluded literature, and high risk of bias of included original clinical trials. CONCLUSION VaD patients may benefit from acupuncture therapy. However, the high risk of bias in original clinical trials and the low quality of SRs/MAs make evidence-based decisions less reliable.
Collapse
Affiliation(s)
- Hongshuo Shi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xuecheng Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Guomin Si
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.,Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongling Jia
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
4
|
Wang P, Mao S, Yi T, Wang L. LncRNA MALAT1 Targets miR-9-3p to Upregulate SAP97 in the Hippocampus of Mice with Vascular Dementia. Biochem Genet 2022; 61:916-930. [PMID: 36227424 DOI: 10.1007/s10528-022-10289-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second most common subtype of dementia, but the precise mechanism underlying VaD is not fully understood. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can act as a key regulator in physiological and pathological processes, including neurological disorders, but whether it is correlated with VaD has not been elucidated. In this study, we established a mouse model of VaD by the transient bilateral common carotid artery occlusion surgery. As expected, the Morris water maze showed that VaD mice had significant deficits in spatial learning and memory. MALAT1 was elevated in the hippocampus of VaD mice. Additionally, we found that microRNA (miR)-9-3p was downregulated in the VaD hippocampus. By performing a dual-luciferase report assay, we verified the binding relationship between MALAT1 and miR-9-3p. Interestingly, synapse-associated protein-97 (SAP97), a well-known gene related to synaptic functions, was found upregulated in the hippocampus of VaD mice. In vitro experiments performed on hippocampal neurons demonstrated that miR-9-3p negatively regulated SAP97 expression. The downregulation of MALAT1 in hippocampal neurons increased miR-9-3p and reduced SAP97, whereas miR-9-3p inhibition rescued the MALAT1 downregulation-mediated SAP97 reduction. In conclusion, the present study reported the alterations in the expression levels of MALAT1, miR-9-3p, and SAP97 in the hippocampus of VaD mice, suggesting that MALAT1 targets miR-9-3p to upregulate SAP97 in the hippocampus of mice with VaD. This work will be helpful for understanding the molecular mechanisms of VaD.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Senlin Mao
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Tingting Yi
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|