1
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
2
|
Ni M, Chen J, Fu M, Li H, Bu S, Hao X, Gu W. UPLC-ESI-MS/MS-Based Analysis of Various Edible Rosa Fruits Concerning Secondary Metabolites and Evaluation of Their Antioxidant Activities. Foods 2024; 13:796. [PMID: 38472910 DOI: 10.3390/foods13050796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The genus Rosa is globally popular with well-established applications since it has a high edible and medicinal value. However, relatively limited research has been conducted on the composition and quality of wild Rosa fruits. The present study aimed to compare the properties and chemical components of five wild edible Rosa fruits, Rosa roxburghii, Rosa sterilis, Rosa laevigata, Rosa davurica, and Rosa sericea. The UPLC-ESI-MS/MS approach identified the key metabolites among the five Rosa fruits as flavonoids, phenolic acids, and organic acids. The main differential metabolites among the five fruits are flavonoids (22.29-45.13%), phenolic acids (17-22.27%), and terpenoids (7.7-24%), respectively. In total, 125 compounds served as potential markers for the five Rosa species. Differential metabolic pathways of five Rosa fruits were analyzed using the KEGG approach. Rosa laevigata fruits showed the highest total polysaccharide (TPS) content of 64.48 g/100 g. All the five Rosa extracts effectively decreased the levels of malondialdehyde while increasing the activities of superoxide dismutase and glutathione peroxidase in the H2O2-induced HaCaT cell model, demonstrating high potential for antioxidant development. Our findings suggest that the five studied Rosa fruits exhibit biological activity and edible value worth further exploration.
Collapse
Affiliation(s)
- Ming Ni
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550014, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Junlei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Mao Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huanyang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Shengqian Bu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
3
|
Mokrzyński K, Krzysztyńska-Kuleta O, Wojtala M, Wnuk D, Sarna M, Sarna T. Can l-ascorbic acid and trans-resveratrol protect HaCaT cells from fine particulate matter toxicity? Photochem Photobiol 2024; 100:172-189. [PMID: 37365883 DOI: 10.1111/php.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Continuous exposure of human skin to air pollution can result in a range of undesirable skin conditions. In our recent study, UV and visible light were found to increase cytotoxicity of fine particulate matter (PM2.5 ) against human keratinocytes. Since it is impossible to avoid exposure of human skin to PM2.5 , effective strategies are needed to reduce their damaging effects. l-ascorbic acid and resveratrol were tested as potential topical agents against pollution-related skin impairment. Although these agents were previously found to ameliorate PM-dependent damage, the effect of light and seasonal variation of particles were not previously studied. EPR spin-trapping, DPPH assay, and singlet oxygen phosphorescence were used to determine the scavenging activities of the antioxidants. MTT, JC-10 and iodometric assays were used to analyze the effect on PM2.5 -induced cytotoxicity, mitochondrial damage and oxidation of lipids. Live-cell imaging was employed to examine wound-healing properties of cells. Light-induced, PM2.5 -mediated oxidative damage was examined by immunofluorescent staining. Both antioxidants effectively scavenged free radicals and singlet oxygen produced by PM2.5 , reduced cell death and prevented oxidative damage to HaCaT cells. l-ascorbic acid and resveratrol, especially when applied in combination, can protect HaCaT cells against the dark and light induced toxicity of PM2.5 .
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Olga Krzysztyńska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wojtala
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Hu L, Xu C, Tang X, Yu S, Wang L, Li Q, Zhou X. Fine particulate matter promotes airway inflammation and mucin production by activating endoplasmic reticulum stress and the IRE1α/NOD1/NF‑κB pathway. Int J Mol Med 2023; 52:96. [PMID: 37654182 PMCID: PMC10555484 DOI: 10.3892/ijmm.2023.5299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Fine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135‑E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit‑8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress‑related proteins, such as glucose‑regulated protein 78, CCAAT‑enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R‑like ER kinase (PERK), phosphorylated (p‑)PERK, inositol‑requiring enzyme 1α (IRE1α) and p‑IRE1α, and nucleotide‑binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL‑6, TNF‑α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF‑κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results of the present study demonstrated that transfection with NOD1 siRNA decreased the production of IL‑6, TNF‑α and MUC5AC, and decreased the translocation of NF‑κB p65. The expression levels of IL‑6, TNF‑α and MUC5AC were increased in the HBE135‑E6E7 cells following treatment with C12‑iE‑DAP, a NOD1 agonist. Moreover, treatment with C12‑iE‑DAP led to the activation of NF‑κB p65. Collectively, the results of the present study suggest that PM2.5 promotes airway inflammation and mucin production by activating ER stress in HBE135‑E6E7 airway epithelial cells, and that the IRE1α/NOD1/NF‑κB pathway may be involved in this process.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan 579199, P.R. China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan 570102
| |
Collapse
|
5
|
Chu J, Xiang Y, Lin X, He M, Wang Y, Ma Q, Duan J, Sun S. Handelin protects human skin keratinocytes against ultraviolet B-induced photodamage via autophagy activation by regulating the AMPK-mTOR signaling pathway. Arch Biochem Biophys 2023; 743:109646. [PMID: 37225010 DOI: 10.1016/j.abb.2023.109646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Handelin is a natural ingredient extracted from Chrysanthemum boreale flowers that has been shown to decrease stress-related cell death, prolong lifespan, and promote anti-photoaging. However, whether handelin inhibits ultraviolet (UV) B stress-induced photodamage remains unclear. In the present study, we investigate whether handelin has protective properties on skin keratinocytes under UVB irradiation. Human immortalized keratinocytes (HaCaT keratinocytes) were pretreated with handelin for 12 h before UVB irradiation. The results indicated that handelin protects keratinocytes against UVB-induced photodamage by activating autophagy. However, the photoprotective effect of handelin was suppressed by an autophagic inhibitor (wortmannin) or the transfection of keratinocytes with a small interfering RNA targeting ATG5. Notably, handelin reduced mammalian target of rapamycin (mTOR) activity in UVB-irradiated cells in a manner similar to that shown by the mTOR inhibitor rapamycin. Adenosine monophosphate-activated protein kinase (AMPK) activity was also induced by handelin in UVB-damaged keratinocytes. Finally, certain effects of handelin, including autophagy induction, mTOR activity inhibition, AMPK activation, and reduction of cytotoxicity, were suppressed by an AMPK inhibitor (compound C). Our data suggest that handelin effectively prevents photodamage by protecting skin keratinocytes against UVB-induced cytotoxicity via the regulation of AMPK/mTOR-mediated autophagy. These findings provide novel insights that can aid the development of therapeutic agents against UVB-induced keratinocyte photodamage.
Collapse
Affiliation(s)
- Jimin Chu
- School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI), Jiangxi Key Laboratory of Human Aging, School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xianghong Lin
- School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Miao He
- School of Pharmacy, Dali University, Dali, 671013, Yunnan, China
| | - Yan Wang
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Qiong Ma
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Jingxian Duan
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China
| | - Sunjiao Sun
- Medical Cosmetology Teaching and Research Section, School of Clinical Medicine, Dali University, Dali, 671013, Yunnan, China.
| |
Collapse
|
6
|
Su W, Wu Y, Zheng H, Guo X, Feng B, Guo F. miR-141-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Inhibits the Progression of Severe Acute Pancreatitis. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on severe acute pancreatitis (SAP) and miRNAs are currently the research hotspots. This study intends to explore the potential impact of miR-141-modified BMSCs on SAP. After establishment of rat model of SAP, the
animals were grouped into control group, model group, BMSCs group, miR-141 group, positive control group, and PI3K/mTOR signaling agonist group (agonist group) followed by analysis of miR-141 expression by RT-qPCR and the expression of serum amylase, IL-6, TNF-α, TAP, PI3K, mTOR,
and LC3-II by Western blot and ELISA. miR-141 was significantly up-regulated in the miR-141-modified BMSCs group (p > 0.05). The contents of serum amylase, IL-6, TNF-α, and TAP was increased in SAP rats and decreased after BMSC treatment (p > 0.05). The increased
autophagy flux in the rats with SAT was reduced upon treatment with BMSCs and autophagy flux was decreased in miR-141 group but increased in positive control group. The model and positive control group presented highest expression of LC3-II, p-PI3K and p-mTOR, followed by BMSCs group and miR-141
group (p < 0.05). In conclusion, miR-141-modified BMSCs decrease the phosphorylation of PI3K and mTOR to inhibit PI3K/mTOR signaling activity and downregulate LC3-II protein to inhibit autophagy, thereby ameliorating the development of SAP, indicating that miR-141 might be a therapeutic
target for SAP.
Collapse
Affiliation(s)
- Wei Su
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Yinshan Wu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Huijun Zheng
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Xiuliu Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Binbin Feng
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
7
|
Lin HW, Shen TJ, Chen PY, Chen TC, Yeh JH, Tsou SC, Lai CY, Chen CH, Chang YY. Particulate matter 2.5 exposure induces epithelial-mesenchymal transition via PI3K/AKT/mTOR pathway in human retinal pigment epithelial ARPE-19 cells. Biochem Biophys Res Commun 2022; 617:11-17. [PMID: 35689837 DOI: 10.1016/j.bbrc.2022.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
Exposure to particulate matter 2.5 (PM2.5) has been linked to ocular surface diseases, yet knowledge of the molecular mechanism impacted on retina pathogenesis is limited. Therefore, the purpose of this study was to explore the effects and involved factors of PM2.5 exposure in human retinal pigment epithelial APRE-19 cells. Our data revealed a decreased cell viability and an increased migratory ability in APRE-19 cells after PM2.5 stimulation. The MMP-2 and MMP-9 protein levels were markedly increased while the MMPs regulators TIMP-1 and TIMP-2 were significantly reduced in PM2.5-exposed APRE-19 cells. PM2.5 also increased pro-MMP-2 expression in the cell culture supernatants. Additionally, PM2.5 promoted the EMT markers through the activation of PI3K/AKT/mTOR pathway. Moreover, the ICAM-1 production was also remarkably increased by PM2.5 but reduced by PI3K/AKT inhibitor LY294002 in APRE-19 cells. Taken together, these results suggest that PM2.5 promotes EMT in a PI3K/AKT/mTOR-dependent manner in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Peng-Yu Chen
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
8
|
Zhu S, Li X, Dang B, Wu F, Wang C, Lin C. Lycium Barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy. Redox Rep 2022; 27:32-44. [PMID: 35130817 PMCID: PMC8843200 DOI: 10.1080/13510002.2022.2036507] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives: Lycium barbarum polysaccharide (LBP) is a natural polysaccharide extracted from Lycium barbarum that has anti-inflammatory, anti-apoptotic and anti-aging effects, and plays a role in the prevention and treatment of various diseases. In this study, we investigated the therapeutic effect of LBP on particulate matter 2.5 (PM2.5)-induced skin damage. Methods: Cell viability was analyzed by MTT and LDH assays. Apoptosis was analyzed by Annexin V-FITC/PI staining. Oxidative stress/damage were assessed by intracellular ROS levels, MDA content and SOD activity. The intracellular protein expression was analyzed by Western blot. Mitochondrial damage was assayed by mitochondrial membrane potential with JC-1 probe. LC3-GFP adenovirus was transfected into HaCaT cells to analyze intracellular autophagosome levels. Results: In PM2.5-treated HaCaT cells, LBP pretreatment reduced PM2.5-induced cytotoxicity, ameliorated cell morphology and reduced cell apoptosis. LBP also inhibited the expression levels of GRP78 and CHOP, reduced the conversion of LC3I to LC3II, inhibited Bax protein and activated Bcl-2 protein. Furthermore, LBP inhibited PM2.5-induced mitochondrial autophagy (mitophagy) and mitochondrial damage. PM2.5-induced autophagy was regulated by endoplasmic reticulum (ER) stress. Conclusion: LBP protects skin cells from PM2.5-induced cytotoxicity by regulating the oxidative stress-ER stress-autophagy-apoptosis signaling axis, revealing that LBP has a great potential for the skin protection.
Collapse
Affiliation(s)
- Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xuan Li
- Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|