1
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Su H, Chen Y, Lin F, Li W, Gu X, Zeng W, Liu D, Li M, Zhong S, Chen Q, Chen Q. Establishment of a lysosome-related prognostic signature in breast cancer to predict immune infiltration and therapy response. Front Oncol 2023; 13:1325452. [PMID: 38162504 PMCID: PMC10757638 DOI: 10.3389/fonc.2023.1325452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Background Lysosomes are instrumental in intracellular degradation and recycling, with their functional alterations holding significance in tumor growth. Nevertheless, the precise role of lysosome-related genes (LRGs) in breast cancer (BC) remains elucidated. This study aimed to establish a prognostic model for BC based on LRGs. Methods Employing The Cancer Genome Atlas (TCGA) BC cohort as a training dataset, this study identified differentially expressed lysosome-related genes (DLRGs) through intersecting LRGs with differential expression genes (DEGs) between tumor and normal samples. A prognostic model of BC was subsequently developed using Cox regression analysis and validated within two Gene Expression Omnibus (GEO) external validation sets. Further analyses explored functional pathways, the immune microenvironment, immunotherapeutic responses, and sensitivity to chemotherapeutic drugs in different risk groups. Additionally, the mRNA and protein expression levels of genes within the risk model were examined by utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases. Clinical tissue specimens obtained from patients were gathered to validate the expression of the model genes via Real-Time Polymerase Chain Reaction (RT-PCR). Results We developed a risk model of BC based on five specific genes (ATP6AP1, SLC7A5, EPDR1, SDC1, and PIGR). The model was validated for overall survival (OS) in two GEO validation sets (p=0.00034 for GSE20685 and p=0.0095 for GSE58812). In addition, the nomogram incorporating clinical factors showed better predictive performance. Compared to the low-risk group, the high-risk group had a higher level of certain immune cell infiltration, including regulatory T cells (Tregs) and type 2 T helper cells (Th2). The high-risk patients appeared to respond less well to general immunotherapy and chemotherapeutic drugs, according to the Tumor Immune Dysfunction and Exclusion (TIDE), Immunophenotype Score (IPS), and drug sensitivity scores. The RT-PCR results validated the expression trends of some prognostic-related genes in agreement with the previous differential expression analysis. Conclusion Our innovative lysosome-associated signature can predict the prognosis for BC patients, offering insights for guiding subsequent immunotherapeutic and chemotherapeutic interventions. Furthermore, it has the potential to provide a scientific foundation for identifying prospective therapeutic targets.
Collapse
Affiliation(s)
- Hairong Su
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengye Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangyu Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Zeng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dan Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Man Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Ramshankar G, Liu R, Perry RJ. The association between the amino acid transporter LAT1, tumor immunometabolic and proliferative features and menopausal status in breast cancer. PLoS One 2023; 18:e0292678. [PMID: 37819900 PMCID: PMC10566702 DOI: 10.1371/journal.pone.0292678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
L-type Amino Acid Transporter 1 (LAT1) facilitates the uptake of specific essential amino acids, and due to this quality, it has been correlated to worse patient outcomes in various cancer types. However, the relationship between LAT1 and various clinical factors, including menopausal status, in mediating LAT1's prognostic effects remains incompletely understood. This is particularly true in the unique subset of tumors that are both obesity-associated and responsive to immunotherapy, including breast cancer. To close this gap, we employed 6 sets of transcriptomic data using the Kaplan-Meier model in the Xena Functional Genomics Explorer, demonstrating that higher LAT1 expression diminishes breast cancer patients' survival probability. Additionally, we analyzed 3'-Deoxy-3'-18F-Fluorothymidine positron emission tomography-computed tomography (18F-FLT PET-CT) images found on The Cancer Imaging Archive (TCIA). After separating all patients based on menopausal status, we correlated the measured 18F-FLT uptake with various clinical parameters quantifying body composition, tumor proliferation, and immune cell infiltration. By analyzing a wealth of deidentified, open-access data, the current study investigates the impact of LAT1 expression on breast cancer prognosis, along with the menopausal status-dependent associations between tumor proliferation, immunometabolism, and systemic metabolism.
Collapse
Affiliation(s)
- Gautham Ramshankar
- Irvington High School, Fremont, California, United States of America
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ryan Liu
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
- Cedar Park High School, Cedar Park, Texas, United States of America
| | - Rachel J. Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Li Q, Liu H, Jin Y, Yu Y, Wang Y, Wu D, Guo Y, Xi L, Ye D, Pan Y, Zhang X, Li J. Analysis of a new therapeutic target and construction of a prognostic model for breast cancer based on ferroptosis genes. Comput Biol Med 2023; 165:107370. [PMID: 37643511 DOI: 10.1016/j.compbiomed.2023.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer, which is the most common malignant tumor among women worldwide and an important cause of death in women. The existing prognostic model for patients with breast cancer is not accurate as breast cancer is resistant to commonly used antitumor drugs. Ferroptosis is a novel mechanism of programmed cell death that depends on iron accumulation and lipid peroxidation. Various studies have confirmed the role of ferroptosis in tumor regulation and ferroptosis is now considered to play an important role in breast cancer development. At present, the association between breast cancer prognosis and ferroptosis-related gene expression remains unclear. Further exploration of this research area may optimize the evaluation and prediction of prognosis of patients with breast cancer and finding of new therapeutic targets. In this study, clinical factors and the expression of multiple genes were evaluated in breast cancer samples from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database database. Eleven prognostication-related genes (TP63, IFNG, MT3, ANO6, FLT3, PTGS2, SLC1A4, JUN, SLC7A5, CHAC1, and TF) were identified from differentially expressed genes to construct a survival prediction model, which showed a good prediction ability. KEGG pathway analysis revealed that immune-related pathways were the primary pathways. ssGSEA analysis showed significant differences in the distribution of certain immune-related cell subsets, such as CD8+T cells and B cells, and in the expression of multiple immune genes, including type II IFN response and APC coinhibition. In addition, 10 immune targets related to ferroptosis in breast cancer were found: CD276, CD80, HHLA2, LILRA2, NCR3LG1, NECTIN3, PVR, SLAMF9,TNFSF4, and BTN1A1. Using TCGA, new ferroptosis genes related to breast cancer prognosis were identified, a new reliable and accurate prognosis model was developed, and 10 new potential therapeutic targets different from the traditional targeted drugs were identified to provide a reference for improving the poor prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Hengchen Liu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yuanquan Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yihang Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Di Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yinghao Guo
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Longfu Xi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Dan Ye
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Yanzhi Pan
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Xiaoxiao Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
5
|
Zhou N, Kong D, Lin Q, Yang X, Zhou D, Lou L, Huang F. Unfolded protein response signature unveils novel insights into breast cancer prognosis and tumor microenvironment. Cancer Genet 2023; 276-277:17-29. [PMID: 37343507 DOI: 10.1016/j.cancergen.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND The critical role of the unfolded protein response (UPR) in tumorigenesis is widely acknowledged, yet the precise molecular mechanisms underlying its contribution to breast cancer (BC) have not been fully elucidated. The present study aimed to comprehensively explore the expression characteristics and prognostic significance of UPR-related genes in breast cancer METHODS: The transcriptome and clinical data of breast cancer were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. Differential expression analysis was conducted on UPR-related genes, and the resulting genes were employed for consensus clustering analysis. A breast cancer prognosis risk model was constructed using univariate, least absolute shrinkage and selection operator (LASSO), and multivariable Cox regression analyses. Difference in survival outcomes between groups were analyzed Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curve was used to assess predictive performance. The relationship between the risk model and clinical-pathological characteristics, immune infiltration, immunotherapy response, and drug sensitivity was assessed. RESULTS Differential expression analysis identified 10 UPR-related genes that were differentially expressed in breast cancer. Using the expression matrix of these genes, two molecular subtypes of breast cancer were characterized, which displayed significant differences in prognostic and immune infiltration characteristics. Drawing from the gene expression profiles that distinguish between the molecular subtypes, a prognostic risk scoring model comprising eight genes was developed. This model stratified BC patients from both the training and validation cohorts into high-risk and low-risk groups. Patients in the low-risk group had better prognoses, while those with advanced clinical stage and T stage exhibited higher risk scores. The high- and low-risk groups exhibited notable disparities in immune cell infiltration and the expression of multiple immune checkpoint-related genes. Additionally, the low-risk group demonstrated elevated immunophenoscore, Merck18, CD274, and CAF scores compared to the high-risk group, along with a lesser sensitivity to chemotherapy drugs. These results suggest that patients within the low-risk group may potentially benefit more from immunotherapy and chemotherapy interventions. CONCLUSIONS This study developed a novel UPR-derived risk signature, which could robustly predict the survival outcome, immune microenvironment, and chemotherapy response of patients with breast cancer.
Collapse
Affiliation(s)
- Nanyang Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Dejia Kong
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Xiaojing Yang
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Dan Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Lihua Lou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Feixiang Huang
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China.
| |
Collapse
|
6
|
Jiao Z, Pan Y, Chen F. The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Mol Diagn Ther 2023; 27:349-369. [PMID: 36991275 DOI: 10.1007/s40291-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer is the most common malignant tumor globally as of 2020 and remains the second leading cause of cancer-related death among female individuals worldwide. Metabolic reprogramming is well recognized as a hallmark of malignancy owing to the rewiring of multiple biological processes, notably, glycolysis, oxidative phosphorylation, pentose phosphate pathway, as well as lipid metabolism, which support the demands for the relentless growth of tumor cells and allows distant metastasis of cancer cells. Breast cancer cells are well documented to reprogram their metabolism via mutations or inactivation of intrinsic factors such as c-Myc, TP53, hypoxia-inducible factor, and the PI3K/AKT/mTOR pathway or crosstalk with the surrounding tumor microenvironments, including hypoxia, extracellular acidification and interaction with immune cells, cancer-associated fibroblasts, and adipocytes. Furthermore, altered metabolism contributes to acquired or inherent therapeutic resistance. Therefore, there is an urgent need to understand the metabolic plasticity underlying breast cancer progression as well as to dictate metabolic reprogramming that accounts for the resistance to standard of care. This review aims to illustrate the altered metabolism in breast cancer and its underlying mechanisms, as well as metabolic interventions in breast cancer treatment, with the intention to provide strategies for developing novel therapeutic treatments for breast cancer.
Collapse
Affiliation(s)
- Zhuoya Jiao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
7
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, Tu J, Nephew KP, Long X. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol 2023; 210:115464. [PMID: 36849062 DOI: 10.1016/j.bcp.2023.115464] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University, Bloomington, IN, USA.
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Song M, Liu J. Circ_0067717 promotes colorectal cancer cell growth, invasion and glutamine metabolism by serving as a miR-497-5p sponge to upregulate SLC7A5. Histol Histopathol 2023; 38:53-64. [PMID: 35818779 DOI: 10.14670/hh-18-494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to exert vital functions in colorectal cancer (CRC) development. However, the role of circ_0067717 in CRC progression remains to be elucidated. METHODS The expression of circ_0067717, microRNA (miR)-497-5p and solute carrier family 7 member 5 (SLC7A5) was analyzed by quantitative real-time PCR. Cell proliferation, apoptosis and invasion were determined by cell counting kit 8 assay, EdU assay, flow cytometry and transwell assay. Protein expression was examined using western blot analysis. Glutamine metabolism was assessed by measuring glutamine consumption, α-ketoglutarate production and glutamate production. The interaction between miR-497-5p and circ_0067717 or SLC7A5 was identified by dual-luciferase reporter assay. Xenograft tumor models were constructed to confirm the role of circ_0067717 in CRC tumorigenesis in vivo. RESULTS Our data revealed that circ_0067717 was upregulated in CRC tissues and cells, and its knockdown restrained CRC cell proliferation, invasion, glutamine metabolism, and promoted apoptosis. MiR-497-5p was lowly expressed in CRC and it could be sponged by circ_0067717. MiR-497-5p inhibitor eliminated the regulation of circ_0067717 knockdown on CRC cell function. SLC7A5 was targeted by miR-497-5p and was positively regulated by circ_0067717. MiR-497-5p overexpression suppressed CRC cell growth, invasion and glutamine metabolism, and SLC7A5 was able to revoke this effect. Animal experiments showed that interference of circ_0067717 reduced CRC tumor growth. CONCLUSION Our research pointed out that circ_0067717 facilitated CRC development depending on the regulation of the miR-497-5p/SLC7A5 axis, providing a novel insight into CRC treatment.
Collapse
Affiliation(s)
- Mo Song
- Department of Anorectal Surgery, Hengshui People's Hospital, Hengshui, China.
| | - Jipan Liu
- Department of Anorectal Surgery, Hengshui People's Hospital, Hengshui, China
| |
Collapse
|
9
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
10
|
SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment. Heliyon 2022; 8:e10866. [PMID: 36217463 PMCID: PMC9547238 DOI: 10.1016/j.heliyon.2022.e10866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Amino acid metabolism participates in forming immunosuppressive tumor microenvironment. Amino acid transporters (AATs), as a gate for admission, remains to be studied. Materials and methods We identified LUAD-specific prognostic AATs, SLC7A5 by differential expression analysis, logistic regression, machine learning, Kaplan-Meier analysis, AUC value filtrating and Cox regression. Then differential expression and distribution of SLC7A5 were depicted. Copy number variation, DNA methylation, transcriptional factors and ceRNA network were investigated to explore potential mechanism causing differential expression. The prognostic and clinical relation were evaluated by Kaplan-Meier analysis, Cox regression analysis. GSEA and GSVA were used to analyze altered pathways between SLC7A5 high- and low-groups. The expression of HLA-related genes and immune checkpoint genes, and immune cells infiltration were detected. SLC7A5 expression in immune cells was evaluated by single-cell sequencing data. IPS and an independent immunotherapy cohort assessed response rates of patients with distinct SLC7A5 expression. Proliferation assay and wound healing assay validated the effects of SLC7A5 on proliferation and migration of LUAD cells. Western blotting and cell viability assays were performed to detect mTORC1 pathway activity and sensitivity to rapamycin. Results SLC7A5 was a LUAD-specific prognostic AAT and had significant differential expression in transcription and translation level. Methylation levels of cg00728300, cg00858400, cg12408911, cg08710629 were negative correlation with SLC7A5 expression. FOXP3 and TFAP2A were possible transcription factors and miR-30a-5p, miR-184, miR-195-5p may target SLC7A5 mRNA. SLC7A5 high-expression indicated poor prognosis and was an independent prognostic factor. mTORC1, cell cycle, DNA damage repair, response to reactive oxygen, angiogenesis, epithelial-mesenchymal transition (EMT) and various growth factors signaling pathways were activated in SLC7A5 high-expression group. Interestingly, SLC7A5 high-expression group had less immune-related genes expression and immune cells infiltration. Single-cell sequencing data also suggested SLC7A5 was downregulated in various T cells, especially effector T cells. Moreover, high SLC7A5 expression indicated poor immunotherapy efficacy and higher sensitivity to inhibitors of mTORC1 pathway, cell cycle and angiogenesis. SLC7A5 deficiency abrogated proliferation, migration and mTORC1 pathway activity. Conclusions In summary, as a LUAD-specific prognostic AAT, SLC7A5 is involved in activation of multiple oncogenic pathways and indicates poor prognosis. Moreover, SLC7A5 may participate in forming immunosuppressive TME and is associated with low response of immunotherapy. SLC7A5 is promising to be a new diagnostic and prognostic biomarker and therapeutic target in LUAD.
Collapse
|
11
|
Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, Li H, Liu Y, Liang C, Ren J, Zhang Y, Wang S, Xiao B. CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA–protein ternary complex. J Exp Clin Cancer Res 2022; 41:251. [PMID: 35986300 PMCID: PMC9389715 DOI: 10.1186/s13046-022-02466-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors in China. Circular RNAs (circRNAs) are novel non-coding RNAs with important regulatory roles in cancer progression. IGF2BP3 has been found to play oncogenic roles in various cancers including GC, while the exact mechanism of IGF2BP3 is largely unknown. Methods The expression of IGF2BP3 in GC was evaluated by Western Blot and bioinformatics analysis. CircRNA expression profiles were screened via IGF2BP3 RIP-seq in GC. Sanger sequencing, RNase R digestion, nucleo-plasmic separation and RNA-FISH assays were used to detect the existence and expression of circARID1A. RNA ISH assay was employed to test the expression of circARID1A in paraffin-embedded GC tissues. Moreover, the function of circARID1A on cellular proliferation was assessed by CCK-8, plate colony formation, EdU assays and GC xenograft mouse model in vivo. Furthermore, the location or binding of circARID1A, IGF2BP3 protein and SLC7A5 in GC was evaluated by RNA-FISH/IF or RNA pull-down assays. Results We identified a novel circRNA, circARID1A, that can bind to IGF2BP3 protein. CircARID1A was significantly upregulated in GC tissues compared with noncancerous tissues and positively correlated with tumor length, tumor volume, and TNM stage. CircARID1A knockdown inhibited the proliferation of GC cells in vitro and in vivo and circARID1A played an important role in the oncogenic function of IGF2BP3. Mechanistically, circARID1A served as a scaffold to facilitate the interaction between IGF2BP3 and SLC7A5 mRNA, finally increasing SLC7A5 mRNA stability. Additionally, circARID1A was able to directly bind SLC7A5 mRNA through complementary base-pairing and then formed the circARID1A-IGF2BP3-SLC7A5 RNA–protein ternary complex and promoted the proliferation of GC via regulating AKT/mTOR pathway. Conclusions Altogether, our data suggest that circARID1A is involved in the function of IGF2BP3 and GC proliferation, and the circARID1A-IGF2BP3-SLC7A5 axis has the potential to serve as a novel therapeutic target for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02466-3.
Collapse
|
12
|
Zhu Q, Wang J, Shi Y, Zha X, Wang S. Bioinformatics Prediction and in vivo Verification Identify SLC7A5 as Immune Infiltration Related Biomarker in Breast Cancer. Cancer Manag Res 2022; 14:2545-2559. [PMID: 36060214 PMCID: PMC9433126 DOI: 10.2147/cmar.s370397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Qiannan Zhu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jue Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yuenian Shi
- Nanjing Medical University, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xiaoming Zha
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Shui Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Correspondence: Shui Wang; Xiaoming Zha, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, 210000, People’s Republic of China, Email ;
| |
Collapse
|
13
|
A Quantitative Proteomic Approach Explores the Possible Mechanisms by Which the Small Molecule Stemazole Promotes the Survival of Human Neural Stem Cells. Brain Sci 2022; 12:brainsci12060690. [PMID: 35741576 PMCID: PMC9221083 DOI: 10.3390/brainsci12060690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders have become a serious healthcare problem worldwide and there is no efficacious cure. However, regulating the fate of stem cells is an effective way to treat these neurological diseases. In previous work, stemazole was reported to maintain the survival of human neural stem cells in the absence of growth factors and to have therapeutic effects on neurodegenerative diseases. However, although it is a promising small molecule, the molecular mechanisms against apoptosis are ambiguous. In this study, tandem mass tag (TMT)-based proteomics were performed to obtain whole protein expression profiles of human neural stem cells in different groups under extreme conditions. Bioinformatics analysis based on protein–protein interaction (PPI) network construction, gene ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were adopted to explore crucial proteins and possible pharmacological mechanisms. A total of 77 differentially expressed proteins were identified, comprising 38 upregulated proteins and 39 downregulated proteins. Combined with a diseases database of Alzheimer’s disease (AD), caspase-2 (CASP2), PKA C-alpha (PRKACA), fibronectin (FN1), large neutral amino acid transporter small subunit 1 (SLC7A5), which are involved in cell proliferation and apoptosis, this was further validated by enzyme activity assay and molecular docking, and regarded as putative targets regulated by stemazole. The present results give an insight into this small molecule and a better understanding for further elucidating the underlying mechanisms in the treatment of stem cells and neurodegenerative diseases.
Collapse
|
14
|
Yan L, He J, Liao X, Liang T, Zhu J, Wei W, He Y, Zhou X, Peng T. A comprehensive analysis of the diagnostic and prognostic value associated with the SLC7A family members in breast cancer. Gland Surg 2022; 11:389-411. [PMID: 35284318 PMCID: PMC8899434 DOI: 10.21037/gs-21-909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 07/21/2023]
Abstract
BACKGROUND The solute carrier (SLC) 7 family genes play central roles in cancer cell metabolism as glucose and glutamate transporters. However, their expression and prognostic value in breast cancer (BC) remains to be elucidated. METHODS Clinical data from BC patients were downloaded from The Cancer Genome Atlas (TCGA) and the Kaplan-Meier (KM) plotter database. The mechanisms underlying the association between SLC7A expression and overall survival (OS) were explored using Cox regression and log-rank tests. ESTIMATE gives a measure of the immune-cell infiltrates. Single-sample (ss) Gene Set Enrichment Analysis (GSEA) was conducted to quantify immune cell infiltration. RESULTS High SLC7A5 expression was associated with a poorer survival time in BC patients according to the TCGA and KM plotter data. SLC7A4 was associated with good progression-free interval (PFI) and disease-specific survival (DSS) according to the TCGA data. Furthermore, SLC7A4 was correlated with good prognosis of OS, distant metastasis-free survival (DMFS), relapse-free survival (RFS), and post-progression survival (PPS) according to the KM plotter data. SLC7A3 expression was positively associated with OS, but was not strongly associated with PFI nor DSS in the TCGA data. However, SLC7A3 was positively correlated with DMFS and RFS in the KM database analysis. SLC7A had excellent diagnostic value in BC patients and was strongly correlated with tumor infiltration. T helper 2 (Th2) cells, CD56 bright natural killer (NK) cells, and NK cells were the most strongly correlated with the SLC7A family genes, suggesting that these genes play a crucial role in BC partly by modulating immune infiltration. CONCLUSIONS SLC7A4 and SLC7A5 expression levels may be sensitive biomarkers for predicting BC outcomes. SLC7A3 may be a potential diagnostic and prognostic biomarker in BC, but further studies are warranted to verify these results.
Collapse
Affiliation(s)
- Liping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment Guangxi Medical University, Nanning, China
| | - Jianxin He
- Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, China
| | - Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Shao Y, Luo J, Ye L, Ran HY, Shi HM, Zhang C, Wu QC. Construction and Integrated Analysis of Competitive Endogenous Long Non-Coding RNA Network in Thoracic Aortic Dissection. Int J Gen Med 2021; 14:6863-6873. [PMID: 34703291 PMCID: PMC8528547 DOI: 10.2147/ijgm.s335082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) can act as a competitive endogenous RNA (ceRNA) to regulate gene expression by sequestering the microRNA (miRNA). However, the lncRNA-miRNA-mRNA ceRNA network in thoracic aortic dissection (TAD) has been rarely documented. Methods Three Gene Expression Omnibus (GEO) datasets were used to detect differentially expressed mRNAs, miRNAs, and lncRNAs in TAD. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for the differentially expressed mRNAs. A protein–protein interaction network for differentially expressed mRNAs was also constructed, and hub genes were identified. We established a ceRNA network of TAD based on the differentially expressed miRNAs, mRNAs and lncRNAs, and verified our results using an independent dataset and quantitative real-time PCR (qRT-PCR). Results In TAD, 267 lncRNAs, 81 miRNAs, and 346 mRNAs were identified as differentially expressed. The established ceRNA network consisted of seven lncRNA nodes, three mRNA nodes, and three miRNA nodes, and the expression of miRNAs in TAD was opposite to that of lncRNAs and mRNAs. Subsequently, an independent GEO dataset and qRT-PCR were used to validate the expression of three mRNAs. In addition, the expression differences in SLC7A5, associated miRNA and lncRNA were verified. According to gene set enrichment analysis of SLC7A5, the most significant KEGG pathway was considerably enriched in spliceosome and pentose phosphate pathway. Conclusion We established a novel ceRNA regulatory network in TAD, which provides valuable information for further research in the molecular mechanisms of TAD.
Collapse
Affiliation(s)
- Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao-Yu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao-Ming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|