1
|
Chen L, Zhou Y, Cheng H, Lu W, Cai M, Jiang K. Circ-SATB2 (hsa_circ_0008928) and miR-150-5p are regulators of TRIM66 in the regulation of NSCLC cell growth and metastasis of NSCLC cells via the ceRNA pathway. J Biochem Mol Toxicol 2024; 38:e23615. [PMID: 38084627 DOI: 10.1002/jbt.23615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Circular RNA (circRNA) was an important modulator and potential molecular target of nonsmall cell lung cancer (NSCLC). CircSATB2 was reported to be upregulated in NSCLC. However, the role and mechanism of circSATB2 in NSCLC progression remain to be illustrated. The RNA and protein expression was detected by quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry assay. Cell counting kit-8, cell colony formation, and 5-ethynyl-2'-deoxyuridine assays were applied to assess cell growth. The migrated and invaded cells were examined by transwell assay. Flow cytometry was performed to measure apoptotic cells. The interaction among circSATB2, microRNA-150-5p (miR-150-5p), and tripartite motif-containing protein 66 (TRIM66) was identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. An in vivo experiment was conducted to investigate the effect of circSATB2 on tumor growth. CircSATB2 expression was highly expressed in NSCLC tissues and cell lines. CircSATB2 and TRIM66 silencing both suppressed NSCLC cell growth, migration, and invasion whereas promoted NSCLC cell apoptosis. CircSATB2 acted as a molecular sponge for miR-150-5p, and miR-150-5p interacted with the 3' untranslated region (3'UTR) of TRIM66. Moreover, circSATB2 knockdown-induced effects were partly reversed by TRIM66 overexpression in NSCLC cells. Besides, cirSATB2 expression was negatively correlated with miR-150-5p level and positively correlated with TRIM66 level in NSCLC tumor tissues. CircSATB2 knockdown blocked xenograft tumor growth in vivo. In summary, this study verified that circSATB2 stimulated NSCLC cell malignant behaviors by miR-150-5p/TRIM66 pathway, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Liangji Chen
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Yuting Zhou
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Hongbing Cheng
- Thoracic Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Wenjing Lu
- Department of Oncology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Mengyang Cai
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Kaifeng Jiang
- Clinical Laboratory, The Central Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
2
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Ma W, Wei D, Li X, Shan L, Fan H, Jin H, Song B, Zhang B. CircPCNX Promotes PDGF-BB-Induced Proliferation and Migration of Human Aortic Vascular Smooth Muscle Cells Through Regulating miR-1278/DNMT1 Axis. Cardiovasc Drugs Ther 2023; 37:877-889. [PMID: 35670983 DOI: 10.1007/s10557-022-07342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human aortic vascular smooth muscle cells (HA-VSMCs) play vital roles in the pathogenesis of vascular diseases. Circular RNAs (circRNAs) have been reported to regulate the biological functions of HA-VSMCs. In this study, the functions of circRNA pecanex homolog (circPCNX) in platelet-derived growth factor-BB (PDGF-BB)-induced HA-VSMCs were investigated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circPCNX, DNA methyltransferase 1 (DNMT1), and microRNA-1278 (miR-1278). 5'-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, wound healing assay, and transwell assay were used to examine cell proliferation, cell cycle, and migration. Western blot assay was utilized to measure protein levels. RNA immunoprecipitation (RIP) assay, RNA pull down assay, and dual-luciferase reporter assay were adopted to analyze the relationships among circPCNX, miR-1278, and DNMT1. RESULTS CircPCNX was upregulated in PDGF-BB-treated HA-VSMCs in a dose- or time-dependent manner. CircPCNX knockdown alleviated PDGF-BB-induced cell proliferation, cell cycle progression, and migration in HA-VSMCs. CircPCNX knockdown could reverse PDGF-BB-induced HA-VSMC progression by regulating DNMT1. Moreover, circPCNX was identified to regulate DNMT1 expression by sponging miR-1278. Inhibition of miR-1278 reversed circPCNX knockdown-mediated effects on cell proliferation and migration in PDGF-BB-induced HA-VSMCs. MiR-1278 overexpression suppressed PDGF-BB-stimulated HA-VSMC proliferation and migration by targeting DNMT1. CONCLUSION CircPCNX promoted PDGF-BB-induced HA-VSMC proliferation and migration by elevating DNMT1 expression through sponging miR-1278.
Collapse
Affiliation(s)
- Wenbin Ma
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Dongmei Wei
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Xinying Li
- Department of Internal Medicine-Digestive, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Lina Shan
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Huixin Jin
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Binghui Song
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Ben Zhang
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China.
| |
Collapse
|
4
|
Liu F, Wu H, Wu G, Long J, Dai J, Wang Z. circPKD2 inhibits the glioma cell proliferation, invasion and glycolytic metabolism through regulating the miR-1278/LATS2 axis. Neurosci Lett 2023; 801:137126. [PMID: 36796622 DOI: 10.1016/j.neulet.2023.137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Glioma is the most prevalent brain tumor with a poor prognosis. Circular RNA (circ) (PKD2) has been identified as a potential tumor suppressor. However, the effect of circPKD2 on glioma has been unknown. circPKD2 expression in glioma and its potential targets were analyzed by bioinformatics methods, qRT-PCR, dual luciferase reporter, RNA-pull down and RNA immunoprecipitation assays. Overall survival was analyzed by Kaplan-Meier method. The correlation of circPKD2 expression with patient's clinical characteristics was assessed by Chi-square test. Glioma cell invasion was detected by Transwell invasion assay, and cell proliferation was determined by CCK8 and EdU assays. ATP level, Lactate production, and glucose consumption were measured by commercial assay kits, and glycolysis-related protein (Ki-67, VEGF, HK2, LDHA) levels were evaluated by western blot. circPKD2 expression was downregulated in glioma, but circPKD2 overexpression inhibited the cell proliferation, invasion, and glycolytic metabolism. Besides, patients with low circPKD2 expression had a worse prognosis. circPKD2 level was correlated with distant metastasis, WHO grade, and Karnofsky, KPS score. circPKD2 acted as a sponge of miR-1278, and LATS2 was a target gene of miR-1278. Moreover, circPKD2 could target miR-1278 to up-regulate LATS2 expression to suppress the cell proliferation, invasion, and glycolytic metabolism. These findings display that circPKD2 can function as a tumor suppressor in glioma by controlling the miR-1278/LATS2 axis and provide the potential biomarkers for glioma treatment.
Collapse
Affiliation(s)
- Feng Liu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China
| | - Guangyong Wu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China
| | - Jun Long
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China
| | - Jin Dai
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, China.
| |
Collapse
|
5
|
Hsa_circ_0015278 Regulates FLT3-ITD AML Progression via Ferroptosis-Related Genes. Cancers (Basel) 2022; 15:cancers15010071. [PMID: 36612069 PMCID: PMC9817690 DOI: 10.3390/cancers15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
AML with the FLT3-ITD mutation seriously threatens human health. The mechanism by which circRNAs regulate the pathogenesis of FLT3-ITD mutant-type AML through ferroptosis-related genes (FerRGs) remains unclear. Differentially expressed circRNAs and mRNAs were identified from multiple integrated data sources. The target miRNAs and mRNAs of the circRNAs were predicted using various databases. The PPI network, ceRNA regulatory network, GO, and KEGG enrichment analyses were performed. The "survival" and the "pROC" R packages were used for K-M and ROC analysis, respectively. GSEA, immune infiltration analysis, and clinical subgroup analysis were performed. Finally, circRNAs were validated by Sanger sequencing and qRT-PCR. In our study, 77 DECircs-1 and 690 DECircs-2 were identified. Subsequently, 11 co-up-regulated DECircs were obtained by intersecting DECircs-1 and DECircs-2. The target miRNAs of the circRNAs were screened by CircInteractome, circbank, and circAtlas. Utilizing TargetScan, ENCORI, and miRWalk, the target mRNAs of the miRNAs were uncovered. Ultimately, 73 FerRGs were obtained, and the ceRNA regulatory network was constructed. Furthermore, MAPK3 and CD44 were significantly associated with prognosis. qRT-PCR results confirmed that has_circ_0015278 was significantly overexpressed in FLT3-ITD mutant-type AML. In summary, we constructed the hsa_circ_0015278/miRNAs/FerRGs signaling axis, which provides new insight into the pathogenesis and therapeutic targets of AML with FLT3-ITD mutation.
Collapse
|
6
|
Li S, Lu X, Zheng D, Chen W, Li Y, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol 2022; 148:3485-3499. [PMID: 35907010 DOI: 10.1007/s00432-022-04128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lung cancer (LC) remains a threatening health issue worldwide. Methyltransferase-like protein 3 (METTL3) is imperative in carcinogenesis via m6A modification of microRNAs (miRNAs). This study estimated the effect of METTL3 in LC by regulating m6A methylation-mediated pri-miR-663 processing. METHODS miR-663 expression in 4 LC cell lines and normal HBE cells was determined using RT-qPCR. A549 and PC9 LC cells selected for in vitro studies were transfected with miR-663 mimics or inhibitor. Cell viability, migration, invasion, proliferation, and apoptosis were detected by CCK-8, Transwell, EdU, and flow cytometry assays. The downstream target genes and binding sites of miR-663 were predicted via Starbase database and validated by dual-luciferase assay. LC cells were delivered with oe-METTL3/sh-METTL3. Crosslinking between METTL3 and DGCR8 was verified by co-immunoprecipitation. Levels of m6A, miR-663, and pri-miR-663 were measured by m6A dot blot assay and RT-qPCR. m6A modification of pri-miR-663 was verified by Me-RIP assay. Finally, the effects of METTL3 in vivo were ascertained by tumor xenograft in nude mice. RESULTS miR-663 was upregulated in LC cells, and miR-663 overexpression promoted cell proliferation, migration, invasion, and inhibited apoptosis, but miR-663 knockdown exerted the opposite effects. miR-663 repressed SOCS6 expression. SOCS6 overexpression annulled the promotion of miR-663 on LC cell growth. METTL3 bound to DGCR8, and METTL3 silencing elevated the levels of pri-miR-663 and m6A methylation-modified pri-miR-663, and suppressed miR-663 maturation and miR-663 expression. METTL3 facilitated tumor growth in mice through the miR-663/SOCS6 axis. CONCLUSION METTL3 promotes LC progression by accelerating m6A methylation-mediated pri-miR-663 processing and repressing SOCS6.
Collapse
Affiliation(s)
- Shengshu Li
- Department of Pulmonary and Critical Care Medicine, The 8th Medical Center of Chinese, PLA General Hospital, Beijing, 100091, China
| | - Xiaoxin Lu
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Dongyang Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Weizong Chen
- Xinglong Red Cross Hospital, Wanning, 571533, China
| | - Yuzhu Li
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| | - Fang Li
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| |
Collapse
|
7
|
Zhu Q, Li Y, Li L, Guo M, Zou C, Xu Y, Yang Z. MicroRNA-889-3p restrains the proliferation and epithelial-mesenchymal transformation of lung cancer cells via down-regulation of Homeodomain-interacting protein kinase 1. Bioengineered 2021; 12:10945-10958. [PMID: 34723781 PMCID: PMC8810057 DOI: 10.1080/21655979.2021.2000283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dysregulated microRNAs (miRNAs) are common in human cancers and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, the aim of this study was to evaluate the expression and biological function of miR-889-3p in lung cancer (LC). MiR-889-3p and Homeodomain-interacting protein kinase 1 (HIPK1) expression was detected in human LC tissues and cells. The correlation of miR-889-3p with the clinicopathology of LC patients was observed. After the transfection of miR-889-3p and HIPK1-related plasmids in human LC cell line A549, several studies were employed for detection of cell growth. In addition, the targeting of miR-889-3p with HIPK1 was verified. The results clarified miR-889-3p was down-regulated, while HIPK1 was up-regulated in LC tissues. Elevated miR-889-3p or repressed HIPK1 weakened the viability, epithelial–mesenchymal transition (EMT), invasion, migration of LC cells, whereas strengthened apoptosis. MiR-889-3p targeted HIPK1; MiR-889-3p mediated HIPK1 to affect the proliferation and EMT of LC cells. Therefore, it is concluded that miR-889-3p repressing HIPK1 restrains the proliferation and EMT of LC cells, providing a novel target for LC therapy.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yun Li
- Department of Respiratory Medicine, The Eighth Medical Center of Pla General Hospital, Beijing, China
| | - Lina Li
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Chenxi Zou
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yi Xu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| |
Collapse
|