1
|
Wang H, Li T, Chi Y, Yang M, Zhao L, Hou J. Near-infrared fluorescence imaging technology guided margin design in oral squamous cell carcinoma: a single-centre retrospective study. Front Oncol 2024; 14:1406595. [PMID: 38903725 PMCID: PMC11186989 DOI: 10.3389/fonc.2024.1406595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Objective The margin status of oral squamous cell carcinoma patients is considered to be predictive of recurrence and long-term survival. Therefore, precise intraoperative margin assessment is crucial. This study investigated the feasibility of using near-infrared fluorescence imaging technology to guide margin design in oral squamous cell carcinoma patients. Methods In this retrospective study, indocyanine green solution was intravenously injected preoperatively into patients. Intraoperatively, the surgical area was illuminated using a near-infrared fluorescence imaging system, which caused the lesion to fluoresce in the surgical area. Surgery was performed with the assistance of fluorescence imaging. The fluorescence intensity of the lesion area and surrounding normal tissue was recorded during surgery. Intraoperative margins were sent for rapid pathology, and postoperative margin pathology results were documented. Results Sixteen patients were included in this study (7 males, 9 females), with an average age of 65.65 ± 12.37 years. Preoperative biopsy and postoperative pathology confirmed oral squamous cell carcinoma in all patients. No cancer cells were found in the margin pathology results. The average fluorescence intensity of the lesion area was 214 ± 4.70, and that of the surrounding normal tissue was 104.63 ± 3.14. There was no significant difference in the fluorescence intensity values of the lesion areas among all patients (F=0.38, P>0.05). There was a significant difference in fluorescence intensity between the lesion area and surrounding normal tissue (t=33.76, P<0.05). Conclusion Near-infrared fluorescence imaging technology can aid in real-time imaging differentiation of lesion areas based on differences in fluorescence intensity during surgery. The use of this technology can assist surgeons in assessing the safety margin and reliably guide surgery.
Collapse
Affiliation(s)
- Honghao Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Tingyu Li
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yifan Chi
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingen Yang
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zhao
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Hou
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Digonnet A, Vankerkhove S, Moreau M, Dekeyser C, Quiriny M, Willemse E, de Saint Aubain N, Cappello M, Donckier V, Bourgeois P. Effect of radiation therapy on lymph node fluorescence in head and neck squamous cell carcinoma after intravenous injection of indocyanine green: a prospective evaluation. EJNMMI Res 2024; 14:47. [PMID: 38753288 PMCID: PMC11098979 DOI: 10.1186/s13550-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Indocyanine green (ICG)-guided surgery has proven effective in the identification of neoplastic tissues. The effect of radiation therapy (RT) on lymph node fluorescence after intravenous injection of ICG has not been addressed yet. The objective of this study was to evaluate the influence of RT on node fluorescence during neck dissection in head and neck squamous cell carcinoma (HNSCC). RESULTS Twenty-four patients with planned neck dissection for HNSCC were prospectively enrolled. Eleven were included without previous radiation therapy and 13 after RT. ICG was intravenously administered in the operating room. The resected specimen was analyzed by the pathology department to determine the status of each resected lymph node (invaded or not). The fluorescence of each resected node was measured in arbitrary units (AU) on paraffin blocs. The surface area (mm2) of all metastatic nodes and of the invaded component were measured. The values of these surface areas were correlated to fluorescence values. A total of 707 nodes were harvested, the mean fluorescence of irradiated nodes (n = 253) was 9.2 AU and of non-irradiated nodes (n = 454) was 9.6 AU (p = 0.63). Fifty nodes were invaded, with a mean fluorescence of 22 AU. The mean fluorescence values in the invaded irradiated nodes (n = 20) and the invaded non-irradiated nodes (n = 30) were 19 AU and 28 AU (p = 0.23), respectively. The surface area of metastatic nodes and of the invaded component were correlated to fluorescence values even after previous RT (p = 0.02). CONCLUSION No differences were observed between the fluorescence of irradiated and non-irradiated lymph nodes, including invaded nodes. ICG-guided surgery can be performed after failed RT. TRIAL REGISTRATION EudraCT ref. 2013-004498-29, registered 29 November 2013. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2013-004498-29.
Collapse
Affiliation(s)
- Antoine Digonnet
- Department of Head and Neck Surgery, Jules Bordet Institute, Université Libre de Bruxelles, 93 Rue Meylemeerch, Brussels, 1070, Belgium.
| | - Sophie Vankerkhove
- Department of Surgical Oncology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Michel Moreau
- Department of Biostatistics, Jules Bordet institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cécile Dekeyser
- Department of Head and Neck Surgery, Jules Bordet Institute, Université Libre de Bruxelles, 93 Rue Meylemeerch, Brussels, 1070, Belgium
| | - Marie Quiriny
- Department of Head and Neck Surgery, Jules Bordet Institute, Université Libre de Bruxelles, 93 Rue Meylemeerch, Brussels, 1070, Belgium
| | - Esther Willemse
- Department of Head and Neck Surgery, Jules Bordet Institute, Université Libre de Bruxelles, 93 Rue Meylemeerch, Brussels, 1070, Belgium
| | - Nicolas de Saint Aubain
- Department of Pathology, Jules Bordet institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Cappello
- Department of Thoracic Surgery, Academic Erasmus Hopsital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Donckier
- Department of Surgery, Jules Bordet institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Bourgeois
- Department of Nuclear Medicine, Academic Erasmus Hopsital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Xiong H, Shao S, Yang Y, Wang W, Xiong H, Han Y, Wang Z, Hu X, Zeng L, Yang Z, Su T. Near-infrared-II Ag 2S quantum dot probes targeting podoplanin enhance immunotherapy in oral squamous cell carcinoma. Biomed Pharmacother 2024; 170:116011. [PMID: 38157644 DOI: 10.1016/j.biopha.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Partial epithelial-mesenchymal transition (pEMT) plays a vital role in oral squamous cell carcinoma (OSCC) cervical lymph node metastasis and tumor immune escape as an immune barrier. However, targeted interventions for pEMT have yet to be established. In this study, we generated an αPDPN-Ag2S probe by modifying a Podoplanin(PDPN) monoclonal antibody on the surface of near infrared (NIR)-II Ag2S quantum dots (QDs) with carboxyl groups through an amide reaction. Then, we evaluated its in vivo targeting ability, therapeutic efficacy of eliminating pEMT using αPDPN-Ag2S-mediated NIR-II photoimmunotherapy (PIT) and biological safety. Here, we found that pEMT is related to CD8 + T-cell infiltration in our human OSCC tissue microarray. Compared with PdpnWT SCC7, the slower growth rate of subcutaneous graft tumors implanted with PdpnKD SCC7 was associated with a change in the tumor immune microenvironment (TIM) in an immunocompetent C3H/HeJ mouse model. In vitro, αPDPN-Ag2S plus NIR 808 nm laser irradiation induced SCC7 cell death. In vivo, NIR-II imaging results show that the αPDPN-Ag2S probe has a good active-targeting ability in a 4-nitroquinoline 1-oxide (4NQO)-induced C57 mouse OSCC model and C3H/HeJ SCC7 subcutaneous graft tumor model. Elimination of pEMT cells by NIR-II αPDPN-Ag2S probe-mediated PIT significantly reversed the local immunosuppressive tumor microenvironment and enhanced PD-1 immunotherapy efficacy. The safety profiles of αPDPN-Ag2S in BALB/c mice were also acceptable. Thus, αPDPN-Ag2S has important clinical translational value in predicting the risk of cervical lymph node metastasis. Importantly, our study proposed a new way to improve the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Honggang Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Shuhui Shao
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yixin Yang
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Weiming Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Ying Han
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Liujun Zeng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zhimin Yang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
4
|
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. NANO-MICRO LETTERS 2023; 15:145. [PMID: 37269391 PMCID: PMC10239433 DOI: 10.1007/s40820-023-01125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
Immunotherapy has become a promising research "hotspot" in cancer treatment. "Soldier" immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.
Collapse
Affiliation(s)
- Yiming Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Abbaci M, Conversano A, Karimi M, Mathieu MC, Rouffiac V, De Leeuw F, Michiels S, Laplace-Builhé C, Mazouni C. Near-Infrared Fluorescence Axillary Reverse Mapping (ARM) Procedure in Invasive Breast Cancer: Relationship between Fluorescence Signal in ARM Lymph Nodes and Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14112614. [PMID: 35681595 PMCID: PMC9179319 DOI: 10.3390/cancers14112614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Near-infrared fluorescence axillary reverse mapping (ARM) is a promising procedure for identification and preservation of arm lymphatic drainage during axillary lymph node dissection (ALND). We included 109 patients to analyze the indocyanine green fluorescence signal in ARM lymph nodes after resection. The fluorescence signal from ARM lymph nodes were compared with clinical findings to determine the importance of this criterion on the potential management of patients with ALND. ARM lymph nodes were identified in 94.5% of cases. The mean normalized fluorescence signal intensity value was 0.47 with no significant signal difference between metastatic and non-metastatic ARM lymph nodes. Only the preoperative diagnosis of metastasis in the axillary nodes of patients was significantly associated with a higher ARM node fluorescence signal intensity. Although preliminary results did not show that fluorescence signal intensity is a reliable diagnostic tool, the NIR fluorescence ARM procedure may be useful for ARM lymph node identification. Abstract The near-infrared (NIR) fluorescence axillary reverse mapping (ARM) procedure is a promising tool to identify and preserve arm lymphatic drainage during axillary lymph node dissection (ALND). The ARMONIC clinical trial was conducted to validate the technique on a large cohort of patients and to analyze the predictive clinical factors for ARM lymph node metastasis. For the first time, the fluorescence signal intensity from the ARM lymph nodes was measured and correlated with clinical findings. A total of 109 patients with invasive breast cancer and indications of mastectomy and ALND underwent the NIR fluorescence ARM procedure. Indocyanine green was administered by intradermal injection followed by intraoperative identification and resection of the ARM lymph nodes with NIR fluorescence camera guidance. The fluorescence signal intensity and signal distribution were then measured ex vivo and compared with clinical outcomes. ARM lymph nodes were successfully identified by fluorescence in 94.5% of cases. The mean normalized fluorescence signal intensity value was 0.47 with no significant signal difference between metastatic and non-metastatic ARM lymph nodes (p = 0.3728). At the microscopic level, the fluorescence signal distribution was focally intense in lymphoid tissue areas. Only the preoperative diagnosis of metastasis in the axillary nodes of patients was significantly associated with a higher ARM node fluorescence signal intensity (p = 0.0253), though it was not significantly associated with the pathological nodal (pN) status (p = 0.8081). Based on an optimal cut-off fluorescence value, the final sensitivity and specificity of the NIR fluorescence ARM procedure for ARM lymph node metastatic involvement were 64.7% and 47.3%, respectively. Although our preliminary results did not show that fluorescence signal intensity is a reliable diagnostic tool, the NIR fluorescence ARM procedure may be useful for ARM lymph node identification. Clinical trial registration: NCT02994225.
Collapse
Affiliation(s)
- Muriel Abbaci
- UMS AMMICa, Plateforme Imagerie et Cytométrie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France;
- Laboratoire d’Imagerie Biomédicale Multimodale Paris Saclay, Université Paris-Saclay, CEA, CNRS, Inserm, 91401 Orsay, France
- Correspondence:
| | - Angelica Conversano
- Department of Breast and Plastic Surgery, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France; (A.C.); (C.M.)
| | - Maryam Karimi
- Bureau de Biostatistique et d’Épidémiologie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France; (M.K.); (S.M.)
- Oncostat U1018, Inserm, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, 94805 Villejuif, France
| | - Marie-Christine Mathieu
- Department of Pathology, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France;
| | - Valérie Rouffiac
- UMS AMMICa, Plateforme Imagerie et Cytométrie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France;
| | - Frederic De Leeuw
- UMS AMMICa, Plateforme Imagerie et Cytométrie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France;
| | - Stefan Michiels
- Bureau de Biostatistique et d’Épidémiologie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France; (M.K.); (S.M.)
- Oncostat U1018, Inserm, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, 94805 Villejuif, France
| | - Corinne Laplace-Builhé
- UMS AMMICa, Plateforme Imagerie et Cytométrie, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France;
- Laboratoire d’Imagerie Biomédicale Multimodale Paris Saclay, Université Paris-Saclay, CEA, CNRS, Inserm, 91401 Orsay, France
| | - Chafika Mazouni
- Department of Breast and Plastic Surgery, Gustave Roussy Cancer Campus, Université Paris-Saclay, 94805 Villejuif, France; (A.C.); (C.M.)
| |
Collapse
|
6
|
Wu Y, Wu H, Lu X, Chen Y, Zhang X, Ju J, Zhang D, Zhu B, Huang S. Development and Evaluation of Targeted Optical Imaging Probes for Image‐Guided Surgery in Head and Neck Cancer. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Yi Chen
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Xue Zhang
- University of Jinan Jinan Shandong 250021 China
| | - Jiandong Ju
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| | - Baocun Zhu
- University of Jinan Jinan Shandong 250021 China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery Shandong Provincial Hospital Cheeloo College of Medicine Shandong University Jinan Shandong 250021 China
| |
Collapse
|
7
|
Zhang Z, He K, Chi C, Hu Z, Tian J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur J Nucl Med Mol Imaging 2022; 49:2531-2543. [PMID: 35230491 PMCID: PMC9206608 DOI: 10.1007/s00259-022-05730-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023]
Abstract
Purpose China has the largest cancer population globally. Surgery is the main choice for most solid cancer patients. Intraoperative fluorescence molecular imaging (FMI) has shown its great potential in assisting surgeons in achieving precise resection. We summarized the typical applications of intraoperative FMI and several new trends to promote the development of precision surgery. Methods The academic database and NIH clinical trial platform were systematically evaluated. We focused on the clinical application of intraoperative FMI in China. Special emphasis was placed on a series of typical studies with new technologies or high-level evidence. The emerging strategy of combining FMI with other modalities was also discussed. Results The clinical applications of clinically approved indocyanine green (ICG), methylene blue (MB), or fluorescein are on the rise in different surgical departments. Intraoperative FMI has achieved precise lesion detection, sentinel lymph node mapping, and lymphangiography for many cancers. Nerve imaging is also exploring to reduce iatrogenic injuries. Through different administration routes, these fluorescent imaging agents provided encouraging results in surgical navigation. Meanwhile, designing new cancer-specific fluorescent tracers is expected to be a promising trend to further improve the surgical outcome. Conclusions Intraoperative FMI is in a rapid development in China. In-depth understanding of cancer-related molecular mechanisms is necessary to achieve precision surgery. Molecular-targeted fluorescent agents and multi-modal imaging techniques might play crucial roles in the era of precision surgery.
Collapse
Affiliation(s)
- Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Computer Science and Beijing Key Lab of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Methods for sentinel lymph node mapping in oral cancer: a literature review. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Oral cancers, excluding non-melanoma skin cancer, are the most common cancers of the head and neck. Of these, 90% are squamous cell carcinomas (SCC). Surgery, which consists of dissection of the primary tumor and lymphadenectomy, is considered a radical method of treatment. There are several ranges of cervical lymphadenectomy: selective neck dissection (SND), modified radical neck dissection (MRND), and radical neck dissection (RND). The extension of surgery depends on the stage of clinical advancement, which can be determined by TNM classification, among other methods. The greatest controversy is related to SND in patients with cN0 (no evidence of regional lymph node metastasis), which is currently standard procedure. This approach is dictated by the possibility of hidden or subclinical metastases. The use of the sentinel lymph node (SLN) concept in patients with early stage of oral cancer and appropriate methods of its mapping may lead to a reduction in the extent of the lymphadenectomy procedure, thus reducing postoperative mortality and maintaining the patient’s function and quality of life, with correct oncological results. So far, available methods for SLN mapping are based on use of markers: methylene blue dye (MBD), metastable radioactive isotope Technetium (99mTc), or the fluorescent substance indocyanine green (ICG).
Collapse
|
9
|
Diagnostic value of indocyanine green for sentinel lymph node mapping and lymph node metastasis in oral/oropharyngeal carcinoma. Oral Oncol 2021; 122:105563. [PMID: 34656055 DOI: 10.1016/j.oraloncology.2021.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023]
Abstract
Indocyanine green (ICG) fluorescence-based sentinel lymph node (SLN) biopsy has been promoted to detect early metastasis of oral/oropharyngeal carcinoma, but its diagnostic value still remains unclear. In this letter, we identified 6 studies on ICG fluorescence based SLN in the detection of lymph node metastasis in oral/oropharyngeal carcinoma. For detection of metastatic lymph node, the overall sensitivity and specificity of the studies were 0.86 and 0.91, respectively. SROC curve was determined according to the combined sensitivity and specificity, and the overall area under the curve AUC was 0.93. On the whole, ICG fluorescence-based SLN biopsy showed promising effect for earlier detection and staging.
Collapse
|