1
|
Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116306. [PMID: 36858276 DOI: 10.1016/j.jep.2023.116306] [Citation(s) in RCA: 174] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Network pharmacology is a new discipline based on systems biology theory, biological system network analysis, and multi-target drug molecule design specific signal node selection. The mechanism of action of TCM formula has the characteristics of multiple targets and levels. The mechanism is similar to the integrity, systematization and comprehensiveness of network pharmacology, so network pharmacology is suitable for the study of the pharmacological mechanism of Chinese medicine compounds. AIM OF THE STUDY The paper summarizes the present application status and existing problems of network pharmacology in the field of Chinese medicine formula, and formulates the research ideas, up-to-date key technology and application method and strategy of network pharmacology. Its purpose is to provide guidance and reference for using network pharmacology to reveal the modern scientific connotation of Chinese medicine. MATERIALS AND METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, ScienceDirect and Google Scholar using the keywords "traditional Chinese medicine", "Chinese herb medicine" and "network pharmacology". The literature cited in this review dates from 2002 to 2022. RESULTS Using network pharmacology methods to predict the basis and mechanism of pharmacodynamic substances of traditional Chinese medicines has become a trend. CONCLUSION Network pharmacology is a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.
Collapse
Affiliation(s)
- Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li JJ, Wang CM, Wang YJ, Yang Q, Cai WY, Li YJ, Song M, Zang YL, Cui XH, Li Q, Chen Y, Weng XG, Zhu XX. Network pharmacology analysis and experimental validation to explore the mechanism of Shenlian extract on myocardial ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114973. [PMID: 34990768 DOI: 10.1016/j.jep.2022.114973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlian extract (SL), extracted from Salvia miltiorrhiza Bunge and Andrographis paniculata (Burm. f.) Nees, has been proved to be effective in the prevention and treatment of atherosclerosis. Recently, we have partially elucidated the mechanisms involved in the therapeutic effects of SL on myocardial ischemia (MI). However, the underlying mechanisms remain largely unclear. AIM OF THE STUDY This study aims to explore the potential molecular mechanism of SL on MI on the basis of network pharmacology. MATERIALS AND METHODS First, the main active ingredients of SL were screened in the Traditional Chinese Medicine Integrated Database, and the MI-associated targets were collected from the DisGeNET database. Then, we used compound-target and target-pathway networks to uncover the therapeutic mechanisms of SL. On the basis of network pharmacology analysis results, we assessed the effects of SL in MI rat model and oxygen glucose deprivation model of H9c2 cells and validated the possible molecular mechanisms of SL on myocardial injury in vivo and in vitro. RESULTS The network pharmacology results showed that 37 potential targets were recognized, including TNF-α, Bcl-2, STAT3, PI3K and MMP2. These results revealed that the possible targets of SL were involved in the regulation of inflammation and apoptosis signaling pathway. Then, in vivo experiments indicated that SL significantly reduced the myocardial infarction size of MI rats. Serum CK-MB, cTnT, CK, LDH, and AST levels were significantly decreased by SL (P < 0.05 or P < 0.01). In vitro, SL significantly increased H9c2 cell viability. The levels of inflammation factors including TNF-α and MMP2 were significantly decreased by SL (P < 0.05 or P < 0.01). TUNEL and Annexin V/propidium iodide assays indicated that SL could significantly decrease the cell apoptotic rate in vivo and in vitro (P < 0.05 or P < 0.01). The remarkable upregulation of anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax protein level further confirmed this result. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the PI3K-AKT and JAK2-STAT3 pathways were significantly enriched in SL. Compared with the model group, SL treatment significantly activated the PI3K-AKT and JAK2-STAT3 pathways in vivo and in vitro according to Western blot analyses. CONCLUSION SL could protect the myocardium from MI injury. The underlying mechanism may be related to the reduction of inflammation and apoptosis by activating the PI3K/AKT and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Jing-Jing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Chun-Miao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Ya-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Yu-Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Min Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Yuan-Long Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xi-He Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiao-Gang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Xiao-Xin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China.
| |
Collapse
|