1
|
Yang S, Wang H, Zhao D, Zhang S, Hu C. Polymyxins: recent advances and challenges. Front Pharmacol 2024; 15:1424765. [PMID: 38974043 PMCID: PMC11224486 DOI: 10.3389/fphar.2024.1424765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Antibiotic resistance is a pressing global health challenge, and polymyxins have emerged as the last line of defense against multidrug-resistant Gram-negative (MDR-GRN) bacterial infections. Despite the longstanding utility of colistin, the complexities surrounding polymyxins in terms of resistance mechanisms and pharmacological properties warrant critical attention. This review consolidates current literature, focusing on polymyxins antibacterial mechanisms, resistance pathways, and innovative strategies to mitigate resistance. We are also investigating the pharmacokinetics of polymyxins to elucidate factors that influence their in vivo behavior. A comprehensive understanding of these aspects is pivotal for developing next-generation antimicrobials and optimizing therapeutic regimens. We underscore the urgent need for advancing research on polymyxins to ensure their continued efficacy against formidable bacterial challenges.
Collapse
Affiliation(s)
- Shan Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hairui Wang
- Institute of Respiratory Health, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhao
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shurong Zhang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang P, Liu S, Sun T, Yang J. Daily fluid intake as a novel covariate affecting the population pharmacokinetics of polymyxin B in patients with sepsis. Int J Antimicrob Agents 2024; 63:107099. [PMID: 38280575 DOI: 10.1016/j.ijantimicag.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Polymyxin B dosing in patients with sepsis is difficult because pathophysiological changes and supportive therapies alter drug pharmacokinetics (PK). This study aimed to investigate the impact of fluid management and renal function on the PK of polymyxin B and to propose alternative dosing regimens. METHODS Patients (aged ≥ 18 y) with sepsis and receiving intravenous polymyxin B for ≥ 96 h were enrolled. Blood samples were collected at steady state. Plasma concentrations were measured by liquid chromatography-tandem mass spectrometry and subjected to population PK modelling. Monte Carlo simulations were used to optimise dosage regimens. RESULTS Eighty-three patients with a median (range) daily fluid intake of 4.2 (1.3-8.4) L and a creatinine clearance (CrCL) of 87.5 (17.3-309.7) mL/min were included. Polymyxin B PK was adequately characterised by a two-compartment model. The PK covariate analysis revealed daily fluid intake statistically significantly affected central volume of distribution and central compartment clearance (CL), and CrCL influenced CL. Simulation indicated that a decreased dosing would be suitable for patients with renal dysfunction (CrCL < 40 mL/min), and therapeutic drug monitoring is recommended to avoid exposure fluctuation when patients have fluid overload. CONCLUSIONS Fluid management as well as renal function are essential factors affecting polymyxin B PK for patients with sepsis, which can help optimise dosage regimens.
Collapse
Affiliation(s)
- Peile Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China; Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- Department of General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- Department of General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China; Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Zeng J, Leng B, Guan X, Jiang S, Xie M, Zhu W, Tang Y, Zhang L, Sha J, Wang T, Ding M, Guo N, Jiang J. Comparative pharmacokinetics of polymyxin B in critically ill elderly patients with extensively drug-resistant gram-negative bacteria infections. Front Pharmacol 2024; 15:1347130. [PMID: 38362145 PMCID: PMC10867212 DOI: 10.3389/fphar.2024.1347130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Elderly patients are more prone to develop acute kidney injury during infections and polymyxin B (PMB)-associated nephrotoxicity than young patients. The differential response to PMB between the elderly and young critically ill patients is unknown. We aimed to assess PMB exposure in elderly patients compared with young critically ill patients, and to determine the covariates of PMB pharmacokinetics in critically ill patients. Methods: Seventeen elderly patients (age ≥ 65 years) and six young critically ill patients (age < 65 years) were enrolled. Six to eight blood samples were collected during the 12 h intervals after at least six doses of intravenous PMB in each patient. PMB plasma concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The primary outcome was PMB exposure as assessed by the area under the concentration-time curve over 24 h at steady state (AUCss, 0-24 h). Results and Discussion: The elderly group had lower total body weight (TBW) and higher Charlson comorbidity scores than young group. Neither AUCss, 0-24 h nor normalized AUCss, 0-24 h (adjusting AUC for the daily dose in mg/kg of TBW) was significantly different between the elderly group and young group. The half-life time was longer in the elderly patients than in young patients (11.21 vs 6.56 h respectively, p = 0.003). Age and TBW were the covariates of half-life time (r = 0.415, p = 0.049 and r = -0.489, p = 0.018, respectively). TBW was the covariate of clearance (r = 0.527, p = 0.010) and AUCss, 0-24 h (r = -0.414, p = 0.049). Patients with AUCss, 0-24 h ≥ 100 mg·h/L had higher baseline serum creatinine levels and lower TBW than patients with AUCss, 0-24 h < 50 mg·h/L or patients with AUCss, 0-24 h 50-100 mg·h/L. The PMB exposures were comparable in elderly and young critically ill patients. High baseline serum creatinine levels and low TBW was associated with PMB overdose. Trial registration: ChiCTR2300073896 retrospectively registered on 25 July 2023.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyan Guan
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuangyan Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Maoyu Xie
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenying Zhu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Tang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Sha
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tengfei Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Ding
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Guo
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinjiao Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Wang J, Li Y, Huang S, Wang M, Jin L, Luo X, Cheng X, Yang N, Zhu H. Mid-dosing interval concentration is important for polymyxin B exposure and acute kidney injury in critically ill patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1911-1921. [PMID: 37655610 PMCID: PMC10725268 DOI: 10.1002/psp4.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to evaluate the association between polymyxin B (PMB) exposure and acute kidney injury (AKI) and analyze the risk factors for PMB-induced AKI in critically ill patients. Plasma concentrations of PMB were determined using an ultraperformance liquid chromatography-tandem mass spectrometer in intensive care unit patients who were administered PMB. Univariate and multivariate analyses were conducted to identify risk factors. A receiver operating characteristic curve was constructed to assess the discriminant power of the factors and to identify the cutoff value for AKI. The white blood cell count and estimated area under the concentration-time curve (AUC) of patients administered PMB were independent risk factors for PMB-induced AKI, where AUC were calculated using a first-order pharmacokinetic equation based on the mid-dosing interval concentration (C1/2t ) and peak concentration. The area under the receiver operating characteristic curve of the final model was 0.805 (95% confidence interval, 0.690-0.921). The cutoff value for the combined predictor was 0.57. Alternatively, when using C1/2t , which was strongly correlated with AUC, as the only independent risk factor, the analysis showed that the 3.47 μg/ml threshold provides favorable differentiation between the AKI and non-AKI groups. These results provide insightful information for therapeutic drug monitoring-guiding PMB dosing in clinical practice.
Collapse
Affiliation(s)
- Jing Wang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanchen Li
- Department of PharmacyChina Pharmaceutical University Nanjing Drum Tower HospitalNanjingChina
| | - Siqi Huang
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Min Wang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Lu Jin
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Xuemei Luo
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Xiaoliang Cheng
- Jiangsu Qlife Medical Technology Group Co., Ltd.NanjingChina
| | - Na Yang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Huaijun Zhu
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| |
Collapse
|
5
|
Lv M, Zhang S. Comment on: "External Evaluation of Population Pharmacokinetic Models for Precision Dosing: Current State and Knowledge Gaps". Clin Pharmacokinet 2023; 62:1183-1185. [PMID: 37351794 DOI: 10.1007/s40262-023-01271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Meng Lv
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Shengnan Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Liang D, Liang Z, Deng G, Cen A, Luo D, Zhang C, Ni S. Population pharmacokinetic analysis and dosing optimization of polymyxin B in critically ill patients. Front Pharmacol 2023; 14:1122310. [PMID: 37063299 PMCID: PMC10090446 DOI: 10.3389/fphar.2023.1122310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives: Since the global broadcast of multidrug-resistant gram-negative bacteria is accelerating, the use of Polymyxin B is sharply increasing, especially in critically ill patients. Unsatisfactory therapeutic effects were obtained because of the abnormal physiological function in critically ill patients. Therefore, the determination of optimal polymyxin B dosage becomes highly urgent. This study aimed to illustrate the polymyxin B pharmacokinetic characteristics by defining the influencing factors and optimizing the dosing regimens to achieve clinical effectiveness.Methods: Steady-state concentrations of polymyxin B from twenty-two critically ill patients were detected by a verified liquid chromatography-tandem mass spectrometry approach. The information on age, weight, serum creatinine, albumin levels, and Acute Physiology and Chronic Health Evaluation-II (APACHE-II) score was also collected. The population PK parameters were calculated by the non-parametric adaptive grid method in Pmetrics software, and the pharmacokinetic/pharmacodynamics target attainment rate was determined by the Monte Carlo simulation method.Results: The central clearance and apparent volume of distribution for polymyxin B were lower in critically ill patients (1.24 ± 0.38 L h-1 and 16.64 ± 12.74 L, respectively). Moreover, albumin (ALB) levels can be used to explain the variability in clearance, and age can be used to describe the variability in the apparent volume of distribution. For maintaining clinical effectiveness and lowering toxicity, 75 mg q12 h is the recommended dosing regimen for most patients suffering from severe infections.Conclusion: This study has clearly defined that in critically ill patients, age and ALB levels are potentially important factors for the PK parameters of polymyxin B. Since older critically ill patients tend to have lower ALB levels, so higher dosages of polymyxin B are necessary for efficacy.
Collapse
Affiliation(s)
- Danhong Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhi Liang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guoliang Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Anfen Cen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dandan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- *Correspondence: Chen Zhang, ; Suiqin Ni,
| | - Suiqin Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- *Correspondence: Chen Zhang, ; Suiqin Ni,
| |
Collapse
|
7
|
Paranos P, Vourli S, Pournaras S, Meletiadis J. Assessing Clinical Potential of Old Antibiotics against Severe Infections by Multi-Drug-Resistant Gram-Negative Bacteria Using In Silico Modelling. Pharmaceuticals (Basel) 2022; 15:1501. [PMID: 36558952 PMCID: PMC9781251 DOI: 10.3390/ph15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
In the light of increasing antimicrobial resistance among gram-negative bacteria and the lack of new more potent antimicrobial agents, new strategies have been explored. Old antibiotics, such as colistin, temocillin, fosfomycin, mecillinam, nitrofurantoin, minocycline, and chloramphenicol, have attracted the attention since they often exhibit in vitro activity against multi-drug-resistant (MDR) gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The current review provides a summary of the in vitro activity, pharmacokinetics and PK/PD characteristics of old antibiotics. In silico modelling was then performed using Monte Carlo simulation in order to combine all preclinical data with human pharmacokinetics and determine the probability of target (1-log kill in thigh/lung infection animal models) attainment (PTA) of different dosing regimens. The potential of clinical efficacy of a drug against severe infections by MDR gram-negative bacteria was considered when PTA was >95% at the epidemiological cutoff values of corresponding species. In vitro potent activity against MDR gram-negative pathogens has been shown for colistin, polymyxin B, temocillin (against E. coli and K. pneumoniae), fosfomycin (against E. coli), mecillinam (against E. coli), minocycline (against E. coli, K. pneumoniae, A. baumannii), and chloramphenicol (against E. coli) with ECOFF or MIC90 ≤ 16 mg/L. When preclinical PK/PD targets were combined with human pharmacokinetics, Monte Carlo analysis showed that among the old antibiotics analyzed, there is clinical potential for polymyxin B against E. coli, K. pneumoniae, and A. baumannii; for temocillin against K. pneumoniae and E. coli; for fosfomycin against E. coli and K. pneumoniae; and for mecillinam against E. coli. Clinical studies are needed to verify the potential of those antibiotics to effectively treat infections by multi-drug resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
8
|
Yang J, Liu S, Lu J, Sun T, Wang P, Zhang X. An area under the concentration-time curve threshold as a predictor of efficacy and nephrotoxicity for individualizing polymyxin B dosing in patients with carbapenem-resistant gram-negative bacteria. Crit Care 2022; 26:320. [PMID: 36258197 PMCID: PMC9578216 DOI: 10.1186/s13054-022-04195-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Evidence supports therapeutic drug monitoring of polymyxin B, but clinical data for establishing an area under the concentration-time curve across 24 h at steady state (AUCss,24 h) threshold are still limited. This study aimed to examine exposure-response/toxicity relationship for polymyxin B to establish an AUCss,24 h threshold in a real-world cohort of patients. METHODS Using a validated Bayesian approach to estimate AUCss,24 h from two samples, AUCss,24 h threshold that impacted the risk of polymyxin B-related nephrotoxicity and clinical response were derived by classification and regression tree (CART) analysis and validated by Cox regression analysis and logical regression analysis. RESULTS A total of 393 patients were included; acute kidney injury (AKI) was 29.0%, clinical response was 63.4%, and 30-day all-cause mortality was 35.4%. AUCss,24 h thresholds for AKI of > 99.4 mg h/L and clinical response of > 45.7 mg h/L were derived by CART analysis. Cox and logical regression analyses showed that AUCss,24 h of > 100 mg h/L was a significant predictor of AKI (HR 16.29, 95% CI 8.16-30.25, P < 0.001) and AUCss,24 h of ≥ 50 mg h/L (OR 4.39, 95% CI 2.56-7.47, P < 0.001) was independently associated with clinical response. However, these exposures were not associated with mortality. In addition, the correlation between trough concentration (1.2-2.8 mg/L) with outcomes was similar to AUCss,24 h. CONCLUSIONS For critically ill patients, AUCss,24 h threshold of 50-100 mg h/L was associated with decreased nephrotoxicity while assuring clinical efficacy. Therapeutic drug monitoring is recommended for individualizing polymyxin B dosing.
Collapse
Affiliation(s)
- Jing Yang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shaohua Liu
- grid.412633.10000 0004 1799 0733Department of General Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jingli Lu
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tongwen Sun
- grid.412633.10000 0004 1799 0733Department of General Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Peile Wang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaojian Zhang
- grid.412633.10000 0004 1799 0733Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan 45005 People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846Henan Engineering Research Center for Application and Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
9
|
Cai XJ, Chen Y, Zhang XS, Wang YZ, Zhou WB, Zhang CH, Wu B, Song HZ, Yang H, Yu XB. Population pharmacokinetic analysis, renal safety, and dosing optimization of polymyxin B in lung transplant recipients with pneumonia: A prospective study. Front Pharmacol 2022; 13:1019411. [PMID: 36313312 PMCID: PMC9608142 DOI: 10.3389/fphar.2022.1019411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: This study aims to characterize the population pharmacokinetics of polymyxin B in lung transplant recipients and optimize its dosage regimens. Patients and methods: This prospective study involved carbapenem-resistant organisms-infected patients treated with polymyxin B. The population pharmacokinetic model was developed using the NONMEM program. The clinical outcomes including clinical treatment efficacy, microbiological efficacy, nephrotoxicity, and hyperpigmentation were assessed. Monte Carlo simulation was performed to calculate the probability of target attainment in patients with normal or decreased renal function. Results: A total of 34 hospitalized adult patients were included. 29 (85.29%) patients were considered of clinical cure or improvement; 14 (41.18%) patients had successful bacteria elimination at the end of the treatment. Meanwhile, 5 (14.71%) patients developed polymyxin B-induced nephrotoxicity; 19 (55.88%) patients developed skin hyperpigmentation. A total of 164 concentrations with a range of 0.56–11.66 mg/L were obtained for pharmacokinetic modeling. The pharmacokinetic characteristic of polymyxin B was well described by a 1-compartment model with linear elimination, and only creatinine clearance was identified as a covariate on the clearance of polymyxin B. Monte Carlo simulations indicated an adjusted dosage regimen might be needed in patients with renal insufficiency and the currently recommended dose regimens by the label sheet of polymyxin B may likely generate a subtherapeutic exposure for MIC = 2 mg/L. Conclusion: Renal function has a significant effect on the clearance of polymyxin B in lung transplant recipients, and an adjustment of dosage was needed in patients with renal impairments.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Chen
- Division of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, China
| | - Xiao-Shan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Bo Zhou
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chun-Hong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hui-Zhu Song
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Hang Yang
- Lung Transplant Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| | - Xu-Ben Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Chonnam National University, Gwangju, South Korea
- *Correspondence: Hui-Zhu Song, ; Hang Yang, ; Xu-Ben Yu,
| |
Collapse
|
10
|
Xie YL, Jin X, Yan SS, Wu CF, Xiang BX, Wang H, Liang W, Yang BC, Xiao XF, Li ZL, Pei Q, Zuo XC, Peng Y. Population pharmacokinetics of intravenous colistin sulfate and dosage optimization in critically ill patients. Front Pharmacol 2022; 13:967412. [PMID: 36105229 PMCID: PMC9465641 DOI: 10.3389/fphar.2022.967412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: To explore the population pharmacokinetics of colistin sulfate and to optimize the dosing strategy for critically ill patients.Methods: The study enrolled critically ill adult patients who received colistin sulfate intravenously for more than 72 h with at least one measurement of plasma concentration. Colistin concentrations in plasma or urine samples were measured by ultraperformance liquid chromatography tandem mass spectrometry (LC-MS/MS). The population pharmacokinetics (PPK) model for colistin sulfate was developed using the Phoenix NLME program. Monte Carlo simulation was conducted to evaluate the probability of target attainment (PTA) for optimizing dosing regimens.Results: A total of 98 plasma concentrations from 20 patients were recorded for PPK modeling. The data were adequately described by a two-compartment model with linear elimination. During modeling, creatinine clearance (CrCL) and alanine aminotransferase (ALT) were identified as covariates of the clearance (CL) and volume of peripheral compartment distribution (V2), respectively. In addition, colistin sulfate was predominantly cleared by the nonrenal pathway with a median urinary recovery of 10.05% with large inter-individual variability. Monte Carlo simulations revealed a greater creatinine clearance associated with a higher risk of sub-therapeutic exposure to colistin sulfate. The target PTA (≥90%) of dosage regimens recommended by the label sheet was achievable only in patients infected by pathogens with MIC ≤0.5 mg/L or with renal impairments.Conclusion: Our study showed that the dose of intravenous colistin sulfate was best adjusted by CrCL and ALT. Importantly, the recommended dosing regimen of 1.0–1.5 million units daily was insufficient for patients with normal renal functions (CrCL ≥80 ml/min) or those infected by pathogens with MIC ≥1.0 mg/L. The dosage of colistin sulfate should be adjusted according to renal function and drug exposure.
Collapse
Affiliation(s)
- Yue-liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shan-shan Yan
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cui-fang Wu
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bi-xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- College of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Hui Wang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wu Liang
- Changsha VALS Technology Co. Ltd., Changsha, China
| | - Bing-chang Yang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xue-fei Xiao
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-ling Li
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| | - Yue Peng
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| |
Collapse
|
11
|
Luo X, Zhang Y, Liang P, Zhu H, Li M, Ding X, Zhang J. Population Pharmacokinetics of Polymyxin B and Dosage Strategy in Critically Ill Patients With/without Continuous Renal Replacement Therapy. Eur J Pharm Sci 2022; 175:106214. [DOI: 10.1016/j.ejps.2022.106214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
|