1
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
2
|
Subedi L, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Crother TR. Chlamydia pneumoniae in Alzheimer's disease pathology. Front Neurosci 2024; 18:1393293. [PMID: 38770241 PMCID: PMC11102982 DOI: 10.3389/fnins.2024.1393293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
While recent advances in diagnostics and therapeutics offer promising new approaches for Alzheimer's disease (AD) diagnosis and treatment, there is still an unmet need for an effective remedy, suggesting new avenues of research are required. Besides many plausible etiologies for AD pathogenesis, mounting evidence supports a possible role for microbial infections. Various microbes have been identified in the postmortem brain tissues of human AD patients. Among bacterial pathogens in AD, Chlamydia pneumoniae (Cp) has been well characterized in human AD brains and is a leading candidate for an infectious involvement. However, no definitive studies have been performed proving or disproving Cp's role as a causative or accelerating agent in AD pathology and cognitive decline. In this review, we discuss recent updates for the role of Cp in human AD brains as well as experimental models of AD. Furthermore, based on the current literature, we have compiled a list of potential mechanistic pathways which may connect Cp with AD pathology.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Messmer M, Pierson L, Pasquier C, Djordjevic N, Chicher J, Hammann P, Pfeffer S, Girardi E. DEAD box RNA helicase 5 is a new pro-viral host factor for Sindbis virus infection. Virol J 2024; 21:76. [PMID: 38553727 PMCID: PMC10981342 DOI: 10.1186/s12985-024-02349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.
Collapse
Affiliation(s)
- Mélanie Messmer
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Louison Pierson
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Charline Pasquier
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Nikola Djordjevic
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Erika Girardi
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, Strasbourg, 67084, France.
| |
Collapse
|
4
|
Aufgebauer CJ, Bland KM, Horner SM. Modifying the antiviral innate immune response by selective writing, erasing, and reading of m 6A on viral and cellular RNA. Cell Chem Biol 2024; 31:100-109. [PMID: 38176419 PMCID: PMC10872403 DOI: 10.1016/j.chembiol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Viral infection and the antiviral innate immune response are regulated by the RNA modification m6A. m6A directs nearly all aspects of RNA metabolism by recruiting RNA-binding proteins that mediate the fate of m6A-containing RNA. m6A controls the antiviral innate immune response in diverse ways, including shielding viral RNA from detection by antiviral sensors and influencing the expression of cellular mRNAs encoding antiviral signaling proteins, cytokines, and effector proteins. While m6A and the m6A machinery are important for the antiviral response, the precise mechanisms that determine how the m6A machinery selects specific viral or cellular RNA molecules for modification during infection are not fully understood. In this review, we highlight recent findings that shed light on how viral infection redirects the m6A machinery during the antiviral response. A better understanding of m6A targeting during viral infection could lead to new immunomodulatory and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Caroline J Aufgebauer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine M Bland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Li S, Wang Y. Regulatory mechanism of DDX5 in ox-LDL-induced endothelial cell injury through the miR-640/SOX6 axis. Clin Hemorheol Microcirc 2024; 88:157-170. [PMID: 39093065 DOI: 10.3233/ch-242254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial dysfunction is an early and pre-clinical manifestation of coronary heart disease (CHD). OBJECTIVE This study investigates the role of DDX5 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury to confer novel targets for the treatment of CHD. METHODS Endothelial cells were induced by ox-LDL. DDX5, pri-miR-640, pre-miR-640, miR-640, and SOX6 expressions were analyzed by RT-qPCR and Western blot. DDX5 expression was intervened by shRNA, followed by CCK-8 analysis of proliferation, flow cytometry detection of apoptosis, and tube formation assay analysis of angiogenic potential of cells. The binding between DDX5 and pri-miR-640 was determined by RIP, and the pri-miR-640 RNA stability was measured after actinomycin D treatment. Dual-luciferase assay verified the targeting relationship between miR-640 and SOX6. RESULTS DDX5 and miR-640 were highly expressed while SOX6 was poorly expressed in ox-LDL-induced endothelial cells. Silence of DDX5 augmented cell proliferation, abated apoptosis, and facilitated angiogenesis. Mechanistically, RNA binding protein DDX5 elevated miR-640 expression by weakening the degradation of pri-miR-640, thereby reducing SOX6 expression. Combined experimental results indicated that overexpression of miR-640 or low expression of SOX6 offset the protective effect of DDX5 silencing on cell injury. CONCLUSION DDX5 elevates miR-640 expression by repressing the degradation of pri-miR-640 and then reduces SOX6 expression, thus exacerbating ox-LDL-induced endothelial cell injury.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, Heilongjiang, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Li F, Ling X, Chakraborty S, Fountzilas C, Wang J, Jamroze A, Liu X, Kalinski P, Tang DG. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J Exp Clin Cancer Res 2023; 42:213. [PMID: 37596619 PMCID: PMC10439624 DOI: 10.1186/s13046-023-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Sayan Chakraborty
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christos Fountzilas
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Tumor Immunology & Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
7
|
Li H, Ma Q, Ren J, Guo W, Feng K, Li Z, Huang T, Cai YD. Immune responses of different COVID-19 vaccination strategies by analyzing single-cell RNA sequencing data from multiple tissues using machine learning methods. Front Genet 2023; 14:1157305. [PMID: 37007947 PMCID: PMC10065150 DOI: 10.3389/fgene.2023.1157305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple types of COVID-19 vaccines have been shown to be highly effective in preventing SARS-CoV-2 infection and in reducing post-infection symptoms. Almost all of these vaccines induce systemic immune responses, but differences in immune responses induced by different vaccination regimens are evident. This study aimed to reveal the differences in immune gene expression levels of different target cells under different vaccine strategies after SARS-CoV-2 infection in hamsters. A machine learning based process was designed to analyze single-cell transcriptomic data of different cell types from the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2, including B and T cells from the blood and nasal cavity, macrophages from the lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was divided into five groups: non-vaccinated (control), 2*adenovirus (two doses of adenovirus vaccine), 2*attenuated (two doses of attenuated virus vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection, mRMR, and permutation feature importance). Some key genes that contributed to the analysis of immune changes, such as RPS23, DDX5, PFN1 in immune cells, and IRF9 and MX1 in tissue cells, were screened. Afterward, the five feature sorting lists were fed into the feature incremental selection framework, which contained two classification algorithms (decision tree [DT] and random forest [RF]), to construct optimal classifiers and generate quantitative rules. Results showed that random forest classifiers could provide relative higher performance than decision tree classifiers, whereas the DT classifiers provided quantitative rules that indicated special gene expression levels under different vaccine strategies. These findings may help us to develop better protective vaccination programs and new vaccines.
Collapse
Affiliation(s)
- Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|