1
|
Zhao D, Zhou Z. Values of three-dimensional speckle tracking imaging for the diagnosis of coronary artery disease. SCAND CARDIOVASC J 2024; 58:2373091. [PMID: 38980113 DOI: 10.1080/14017431.2024.2373091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
Background: Coronary artery disease (CAD) is a top life-threatening disease and early and sensitive detection of CAD remains a challenge. This study aimed to assess the value of three-dimensional speckle tracking imaging (3D-STI) in diagnosing CAD patients and investigate the parameters of 3D-STI associated with disease severity. Methods: A total of 260 suspected CAD patients who met the study criteria underwent coronary angiography within one week after the ultrasound examination. Based on the examination results, 142 patients were confirmed to have CAD (CAD group), while 118 patients were classified as non-CAD (NCAD group). Age, gender, family history, smoking status, diabetes, hypertension, dyslipidemia, electrocardiogram, BMI, heart rate, and left ventricular ejection fraction were compared between the two groups. Additionally, 3D-STI parameters including left ventricular global radial strain (GRS), left ventricular global longitudinal strain (GLS), left ventricular global area strain (GAS), and left ventricular global circumferential strain (GCS) were analyzed. Results: No significant differences were found between the CAD and NCAD groups in terms of demographics, smoking history, physiological measurements, and common comorbidities such as diabetes mellitus and dyslipidemia. However, when comparing the 3D-STI parameters, all four parameters, including GLS, GRS, GCS, and GAS, were significantly different in the CAD group compared to the NCAD group. The results suggest that 3D-STI parameters have diagnostic value for CAD, and their changes are associated with CAD severity. Conclusions: Combined detection of these parameters enhances diagnostic accuracy compared to individual detection.
Collapse
Affiliation(s)
- Dexia Zhao
- Department of Ultrasonic Medicine, Daqing Oilfield General Hospital, Heilongjiang, China
| | - Zhenfang Zhou
- Department of Ultrasonic Medicine, Daqing Oilfield General Hospital, Heilongjiang, China
| |
Collapse
|
2
|
Dykiert I, Florek K, Kraik K, Gać P, Poręba R, Poręba M. Tpeak-Tend ECG Marker in Obesity and Cardiovascular Diseases: A Comprehensive Review. SCIENTIFICA 2024; 2024:4904508. [PMID: 38962529 PMCID: PMC11221957 DOI: 10.1155/2024/4904508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Globally, cardiovascular diseases are still the leading cause of death. Numerous methods are used to diagnose cardiovascular pathologies; there is still a place for straightforward and noninvasive techniques, such as electrocardiogram (ECG). Depolarization and repolarization parameters, including QT interval and its derivatives, are well studied. However, the Tpeak-Tend interval is a novel and promising ECG marker with growing evidence for its potential role in predicting malignant arrhythmias. In this review, we discuss the association between the Tpeak-Tend interval and several cardiovascular diseases, including long QT syndrome, cardiomyopathies, heart failure, myocardial infarction, and obesity, which constitutes one of the risk factors for cardiovascular diseases.
Collapse
Affiliation(s)
- Irena Dykiert
- Division of PathophysiologyDepartment of Physiology and PathophysiologyWroclaw Medical University, Wrocław, Poland
| | - Kamila Florek
- Students' Scientific Association of Cardiovascular Diseases PreventionDepartment of Internal and Occupational DiseasesHypertension and Clinical OncologyWroclaw Medical University, Wrocław, Poland
| | - Krzysztof Kraik
- Students' Scientific Association of Cardiovascular Diseases PreventionDepartment of Internal and Occupational DiseasesHypertension and Clinical OncologyWroclaw Medical University, Wrocław, Poland
| | - Paweł Gać
- Division of Environmental Health and Occupational MedicineDepartment of Population HealthWroclaw Medical University, Wrocław, Poland
| | - Rafał Poręba
- Department of Internal and Occupational DiseasesHypertension and Clinical OncologyWroclaw Medical University, Wrocław, Poland
| | - Małgorzata Poręba
- Department of Paralympic SportWroclaw University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Saito N, Kato S, Azuma M, Horita N, Utsunomiya D. Prognostic impact of MRI-derived feature tracking myocardial strain in patients with non-ischaemic dilated cardiomyopathy: a systematic review and meta-analysis. Clin Radiol 2024; 79:e702-e714. [PMID: 38402086 DOI: 10.1016/j.crad.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 02/26/2024]
Abstract
AIM To evaluate the clinical utility of feature tracking (FT)-derived myocardial strain in patients with non-ischaemic dilated cardiomyopathy (NIDCM). MATERIALS AND METHODS Electronic database searches of PubMed, Web of Science Core Collection, Cochrane advanced search, and EMBASE were performed. Studies on NIDCM were divided into categories according to left ventricular ejection fraction (LVEF; <30%, 30-40%, >40%), and correlations between strains and prevalence of late gadolinium enhancement (LGE) were evaluated by weighted correlation coefficients. Global longitudinal strain (GLS) hazard ratios were also integrated for prediction of future adverse events. RESULTS The present meta-analysis analysed data from 5,767 patients with NIDCM from 30 eligible studies. GLS and global circumferential strain significantly differed across the three LVEF categories (all p<0.05); however, global radial strain did not. Only GLS showed a strong correlation with the prevalence of LGE (Spearman's correlation coefficient = 0.61). The pooled HR of GLS for predicting adverse events was 1.15 (95% confidence interval [CI]: 1.07-1.23, p<0.001). CONCLUSION In this meta-analysis, FT-derived GLS was strongly correlated with myocardial fibrosis and was an important predictor of future adverse events. These results suggest that FT-derived GLS may be useful in the pathological evaluation and risk stratification of NIDCM.
Collapse
Affiliation(s)
- N Saito
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - S Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | - M Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - N Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - D Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Argentiero A, Carella MC, Mandunzio D, Greco G, Mushtaq S, Baggiano A, Fazzari F, Fusini L, Muscogiuri G, Basile P, Siena P, Soldato N, Napoli G, Santobuono VE, Forleo C, Garrido EC, Di Marco A, Pontone G, Guaricci AI. Cardiac Magnetic Resonance as Risk Stratification Tool in Non-Ischemic Dilated Cardiomyopathy Referred for Implantable Cardioverter Defibrillator Therapy-State of Art and Perspectives. J Clin Med 2023; 12:7752. [PMID: 38137821 PMCID: PMC10743710 DOI: 10.3390/jcm12247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is a disease characterized by left ventricular dilation and systolic dysfunction. Patients with DCM are at higher risk for ventricular arrhythmias and sudden cardiac death (SCD). According to current international guidelines, left ventricular ejection fraction (LVEF) ≤ 35% represents the main indication for prophylactic implantable cardioverter defibrillator (ICD) implantation in patients with DCM. However, LVEF lacks sensitivity and specificity as a risk marker for SCD. It has been seen that the majority of patients with DCM do not actually benefit from the ICD implantation and, on the contrary, that many patients at risk of SCD are not identified as they have preserved or mildly depressed LVEF. Therefore, the use of LVEF as unique decision parameter does not maximize the benefit of ICD therapy. Multiple risk factors used in combination could likely predict SCD risk better than any single risk parameter. Several predictors have been proposed including genetic variants, electric indexes, and volumetric parameters of LV. Cardiac magnetic resonance (CMR) can improve risk stratification thanks to tissue characterization sequences such as LGE sequence, parametric mapping, and feature tracking. This review evaluates the role of CMR as a risk stratification tool in DCM patients referred for ICD.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Maria Cristina Carella
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Donato Mandunzio
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Giulia Greco
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Fabio Fazzari
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | | | - Paolo Basile
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Paola Siena
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Nicolò Soldato
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Gianluigi Napoli
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Eduard Claver Garrido
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Andrea Di Marco
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| |
Collapse
|