1
|
Chen YZ, Qiu XO, Wang L, Jiang X, Su XJ, Xia JS, Liao Z, Li ZS. Novel ultrasound capsule endoscopy for gastrointestinal scanning: An in vivo animal study. Endosc Ultrasound 2024; 13:253-258. [PMID: 39318748 PMCID: PMC11419533 DOI: 10.1097/eus.0000000000000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and objectives EUS is an important modality for diagnosis and assessment of gastrointestinal (GI) subepithelial lesions. However, EUS is invasive and operator-dependent and requires sedation in most cases. The newly developed ultrasound capsule endoscopy (USCE) system, with both white-light and ultrasound imaging modalities, is a minimally invasive method for superficial and submucosal imaging of the esophagus. This animal study aimed to evaluate the feasibility and efficacy of the USCE system for upper GI tract and small bowel scanning. Methods Three Bama miniature pigs were selected to scan their esophagus, stomach, small bowel, and simulated submucosal lesions. USCE was performed first, followed by EUS. The feasibility of USCE was measured by obtaining ultrasound images of normal GI walls and submucosal lesions under the guidance of optical viewing. The efficacy of USCE was evaluated by comparing tissue structures and lesion features shown on ultrasound images obtained with both instruments. Results Under the optical mode of USCE, the GI tract was well visualized, and all simulated lesions were located. Clear ultrasound images of normal GI tract and submucosal lesions were acquired. Ultrasound images of the esophagus, stomach, and small bowel were characterized by differentiated multilayer structures on USCE, which was consistent with the structures displayed on EUS. And the visualization of submucosal lesions, using both USCE and EUS, was characterized by a hypoechoic and well-demarcated mass in the layer of submucosa. Conclusions This animal study indicated the feasibility and potential clinical efficacy of this USCE for simultaneous optical mucosal visualization and transmural ultrasound imaging of upper GI tract and small bowel, providing possibility of using this technology for a wider range of GI tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuan Liao
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Thwaites PA, Yao CK, Halmos EP, Muir JG, Burgell RE, Berean KJ, Kalantar‐zadeh K, Gibson PR. Review article: Current status and future directions of ingestible electronic devices in gastroenterology. Aliment Pharmacol Ther 2024; 59:459-474. [PMID: 38168738 PMCID: PMC10952964 DOI: 10.1111/apt.17844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Advances in microelectronics have greatly expanded the capabilities and clinical potential of ingestible electronic devices. AIM To provide an overview of the structure and potential impact of ingestible devices in development that are relevant to the gastrointestinal tract. METHODS We performed a detailed literature search to inform this narrative review. RESULTS Technical success of ingestible electronic devices relies on the ability to miniaturise the microelectronic circuits, sensors and components for interventional functions while being sufficiently powered to fulfil the intended function. These devices offer the advantages of being convenient and minimally invasive, with real-time assessment often possible and with minimal interference to normal physiology. Safety has not been a limitation, but defining and controlling device location in the gastrointestinal tract remains challenging. The success of capsule endoscopy has buoyed enthusiasm for the concepts, but few ingestible devices have reached clinical practice to date, partly due to the novelty of the information they provide and also due to the challenges of adding this novel technology to established clinical paradigms. Nonetheless, with ongoing technological advancement and as understanding of their potential impact emerges, acceptance of such technology will grow. These devices have the capacity to provide unique insight into gastrointestinal physiology and pathophysiology. Interventional functions, such as sampling of tissue or luminal contents and delivery of therapies, may further enhance their ability to sharpen gastroenterological diagnoses, monitoring and treatment. CONCLUSIONS The development of miniaturised ingestible microelectronic-based devices offers exciting prospects for enhancing gastroenterological research and the delivery of personalised, point-of-care medicine.
Collapse
Affiliation(s)
- Phoebe A. Thwaites
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Chu K. Yao
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Emma P. Halmos
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Jane G. Muir
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Rebecca E. Burgell
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| | - Kyle J. Berean
- Atmo BiosciencesMelbourneVictoriaAustralia
- School of Engineering, RMIT UniversityMelbourneVictoriaAustralia
| | - Kourosh Kalantar‐zadeh
- Faculty of Engineering, School of Chemical and Biomolecular EngineeringThe University of SydneyCamperdownNew South WalesAustralia
| | - Peter R. Gibson
- Department of Gastroenterology, Central Clinical SchoolMonash University and Alfred HealthMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Qiu XO, Jiang X, Chen YZ, Xia JS, Pan J, Wang L, Liao Z, Li ZS. New US capsule endoscopy for superficial and submucosal imaging of the esophagus: the first-in-human study. Gastrointest Endosc 2023; 98:642-652. [PMID: 37356634 DOI: 10.1016/j.gie.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND AIMS EUS is essential in diagnosing and staging of esophageal subepithelial lesions and tumors. However, EUS is invasive, relies on highly trained endoscopists, and typically requires sedation. The newly developed US capsule endoscopy (USCE), which incorporates both white-light and US imaging modalities into a tethered capsule, is a minimally invasive method for obtaining superficial and submucosal information of the esophagus. This study aimed to assess the feasibility and safety of this USCE system. METHODS Twenty participants were enrolled: 10 healthy volunteers and 10 patients with esophageal lesions indicated for EUS. Participants first underwent USCE and subsequently EUS within 48 hours. The primary outcome was the technical success rate of USCE. Secondary outcomes were safety, visualization of the esophagus, and comfort assessment. RESULTS The technical success rate of USCE was 95% because 1 patient failed to swallow the capsule. No adverse events were observed. The esophagus was well visualized, and all lesions were detected under USCE optical mode in 19 participants. For healthy volunteers, the US images of normal esophageal walls were all characterized by differentiated 7-layer architecture under both USCE and EUS. For 9 patients, the features of esophageal lesions were recognized clearly under USCE, and presumptive diagnoses derived from USCE were all consistent with those from EUS. Most participants preferred USCE to EUS. CONCLUSIONS The novel USCE is feasible and safe to observe the esophageal mucosa and acquire submucosal information, which has the potential to be widely used in the clinic. (Clinical trial registration number: NCT05054933.).
Collapse
Affiliation(s)
- Xiao-Ou Qiu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xi Jiang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi-Zhi Chen
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jing-Song Xia
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Pan
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuan Liao
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Yang W, Li Z, Liu R, Tong X, Wang W, Xu D, Gao S. Application of capsule endoscopy in patients with chronic and recurrent abdominal pain: Abbreviated running title: capsule endoscopy in abdominal pain. Med Eng Phys 2022; 110:103901. [PMID: 36241495 DOI: 10.1016/j.medengphy.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/15/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The incidence of chronic and recurrent abdominal pain increases every year, while the diagnosis is still unsatisfactory even after a number of check-ups. This study aimed to evaluate the diagnosis value of capsule endoscopy in patients suffering from chronic and recurrent abdominal pain. METHODS A retrospective case study was performed in 80 chronic and recurrent abdominal pain patients at Xiangyang Central Hospital from January 2013 to November 2017. Meanwhile, diagnoses by capsule endoscopy were collected for analysis. RESULTS Abnormal findings were found in 54 of 80 (67.5%) patients. The findings in chronic and recurrent abdominal pain patients include small intestinal erosion and congestion, small intestinal ulcers, small intestinal parasites, small intestinal vascular malformations, small intestinal polyps, small intestinal diverticulum, and small intestinal lymphangiectasia. There were no immediate significant side effects without being reported up to 1 month after ingestion of the capsule. The capsule was evacuated by all patients. CONCLUSIONS Capsule endoscopy has a great value in the diagnosis of chronic and recurrent abdominal pain with satisfactory safety and less pain for patients. Inflammatory lesions and ulcers in the small intestine account for the majority of positive findings in these patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Zheng Li
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Rui Liu
- Medical School of Xiangyang Vocational and Technical College
| | - Xudong Tong
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Wei Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Dongqiang Xu
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China
| | - Shan Gao
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, 441021, China.
| |
Collapse
|
5
|
Capsule Endoscopy: Pitfalls and Approaches to Overcome. Diagnostics (Basel) 2021; 11:diagnostics11101765. [PMID: 34679463 PMCID: PMC8535011 DOI: 10.3390/diagnostics11101765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Capsule endoscopy of the gastrointestinal tract is an innovative technology that serves to replace conventional endoscopy. Wireless capsule endoscopy, which is mainly used for small bowel examination, has recently been used to examine the entire gastrointestinal tract. This method is promising for its usefulness and development potential and enhances convenience by reducing the side effects and discomfort that may occur during conventional endoscopy. However, capsule endoscopy has fundamental limitations, including passive movement via bowel peristalsis and space restriction. This article reviews the current scientific aspects of capsule endoscopy and discusses the pitfalls and approaches to overcome its limitations. This review includes the latest research results on the role and potential of capsule endoscopy as a non-invasive diagnostic and therapeutic device.
Collapse
|
6
|
Yang S, Lemke C, Cox BF, Newton IP, Nathke I, Cochran S. A Learning-Based Microultrasound System for the Detection of Inflammation of the Gastrointestinal Tract. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:38-47. [PMID: 32881684 DOI: 10.1109/tmi.2020.3021560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inflammation of the gastrointestinal (GI) tract accompanies several diseases, including Crohn's disease. Currently, video capsule endoscopy and deep bowel enteroscopy are the main means for direct visualisation of the bowel surface. However, the use of optical imaging limits visualisation to the luminal surface only, which makes early-stage diagnosis difficult. In this study, we propose a learning enabled microultrasound ( μ US) system that aims to classify inflamed and non-inflamed bowel tissues. μ US images of the caecum, small bowel and colon were obtained from mice treated with agents to induce inflammation. Those images were then used to train three deep learning networks and to provide a ground truth of inflammation status. The classification accuracy was evaluated using 10-fold evaluation and additional B-scan images. Our deep learning approach allowed robust differentiation between healthy tissue and tissue with early signs of inflammation that is not detectable by current endoscopic methods or by human inspection of the μ US images. The methods may be a foundation for future early GI disease diagnosis and enhanced management with computer-aided imaging.
Collapse
|
7
|
Gregson R, Greenhalgh S, Cox B, Cochrane S, Clutton RE. Feeding management before gastrointestinal studies in pigs. Lab Anim 2020; 55:177-180. [PMID: 33045909 PMCID: PMC8044613 DOI: 10.1177/0023677220960509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pigs are used to model humans in gastrointestinal (GI) studies because of their comparable size, physiology and behaviour: both are monogastric omnivores. A porcine surgical model for testing novel, tethered ultrasound capsule endoscopes (USCE) requires a clean, motile small intestine. Recommendations for human GI tract preparation before the mechanically similar process of video capsule endoscopy describe using oral purgatives, while high-carbohydrate drinks are recommended before colorectal surgery. Reports of the GI preparation of pigs exist but lack technical details, that is, administration, efficacy and side effects. This report details feeding a high-energy liquid diet to 11 female pigs undergoing surgery and USCE which was readily accepted and easily administered, and which produced a clean, motile small intestine and caused no detectable physiological/behavioural abnormalities.
Collapse
Affiliation(s)
- Rachael Gregson
- Wellcome Critical Care Laboratory for Large Animals, Dryden Farm, University of Edinburgh, UK
| | - Stephen Greenhalgh
- Wellcome Critical Care Laboratory for Large Animals, Dryden Farm, University of Edinburgh, UK
| | - Benjamin Cox
- Division of Imaging and Technology, School of Medicine, University of Dundee, UK
| | - Sandy Cochrane
- James Watt South Building, James Watt School of Engineering, University of Glasgow, UK
| | - R Eddie Clutton
- Wellcome Critical Care Laboratory for Large Animals, Dryden Farm, University of Edinburgh, UK
| |
Collapse
|
8
|
Medjdoub A, Lefebvre F, Saad N, Soudani S, Nassar G. Acoustic concept based on an autonomous capsule and a wideband concentric ring resonator for pathophysiological prevention. Artif Intell Med Imaging 2020; 1:50-64. [DOI: 10.35711/aimi.v1.i1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Research on the performance of elements constituting our modern environment is constantly evolving, both on a daily basis and on technological basis. But to date, the response of the system to the expectations of the population remains too modest.
AIM To elaborate an ultrasonic technique to scan and evaluate in-vivo physiological properties by coupling sensors and multilayer biological tissues model.
METHODS A low-frequency ultrasonic method (around a frequency of 32 KHz) based on the use of an innovative autonomous ultrasonic capsule as a miniaturized elementary spherical sensor (1 cm of diameter) and micro-rings resonators were examined.
RESULTS Other their functions as passive listeners for the prevention and diagnosis in physiopathology of the respiratory and laryngeal apparatus, these micro-resonators coupled to the ultrasonic capsule through biological tissues (the body) are capable of evaluating the effects of aggression of the environment on human metabolism.
CONCLUSION This would allow consequently the detection of some potential diseases at an early stage, even in people who still represent no symptoms, which would permit an early treatment and a higher chance of cure.
Collapse
Affiliation(s)
- Amina Medjdoub
- Institute of Electronic, Microelectronic and Nanotechnology, Department of Opto-Acousto-Electronic, Université Polytechnique Hauts-de-France, Villeneuve d'Ascq 59652, France
| | - Fabrice Lefebvre
- Institute of Electronic, Microelectronic and Nanotechnology, Department of Opto-Acousto-Electronic, Université Polytechnique Hauts-de-France, Villeneuve d'Ascq 59652, France
| | - Nadine Saad
- Department of Physics, Université Libanaise-Faculté des Sciensces, Beyrouth 1000, Lebanon
| | - Saïd Soudani
- Signal Processing Department, Université des Sciences et de la Technologie d'Oran, Oran 31000, Algeria
| | - Georges Nassar
- Institute of Electronic, Microelectronic and Nanotechnology, Department of Opto-Acousto-Electronic, Université Polytechnique Hauts-de-France, Villeneuve d'Ascq 59652, France
| |
Collapse
|
9
|
Lee JH, Traverso G, Ibarra-Zarate D, Boning DS, Anthony BW. Ex Vivo and In Vivo Imaging Study of Ultrasound Capsule Endoscopy. J Med Device 2020; 14:021005. [PMID: 32431763 DOI: 10.1115/1.4046352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Wireless capsule endoscopy (WCE) has revolutionized the capacity for evaluation of the gastrointestinal (GI) tract, but its evaluation is limited to the mucosal surface. To overcome this, ultrasound capsule endoscopy (UCE) that can evaluate the deeper structures beyond the mucosal surface has been proposed and several studies focusing on technology development have demonstrated promising results. However, investigations of the potential for clinical utility of this technology are lacking. This work had two main goals: perform ex vivo and in vivo imaging studies in a swine model to (1) evaluate if acoustic coupling between a capsule with a specific size and GI tract can be achieved only through peristalsis autonomously without any human control and (2) identify key issues and challenges to help guide further research. The images acquired in these studies were able to visualize the wall of the GI tract as well as the structures within demonstrating that achieving adequate acoustic coupling through peristalsis is possible. Critical challenges were identified including level of visualization and area of coverage; these require further in-depth investigation before potential clinical utility of UCE technology can be concluded.
Collapse
Affiliation(s)
- John H Lee
- Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Giovanni Traverso
- Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
| | - David Ibarra-Zarate
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Eugenio Garza Sada 2501 sur col. Tecnológico c.p, Monterrey, Nuevo León 64849, México
| | - Duane S Boning
- Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Brian W Anthony
- Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
10
|
Qiu Y, Huang Y, Zhang Z, Cox BF, Liu R, Hong J, Mu P, Lay HS, Cummins G, Desmulliez MPY, Clutton E, Zheng H, Qiu W, Cochran S. Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:796-804. [PMID: 31902446 DOI: 10.1016/j.ultrasmedbio.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected. Micro-ultrasound (μUS) using high-frequency (>20 MHz) ultrasound can provide a means of transmural or cross-sectional image of the GI tract. Depth of imaging is approximately 10 mm with a resolution of between 40-120 μm that is sufficient to differentiate between subsurface histologic layers of the various regions of the GI tract. Ultrasound capsule endoscopy (USCE) uses a capsule equipped with μUS transducers that are capable of imaging below the GI wall surface, offering thereby a complementary sensing technique to optical imaging capsule endoscopy. In this work, a USCE device integrated with a ∼30 MHz ultrasonic transducer was developed to capture a full 360° image of the lumen. The performance of the device was initially evaluated using a wire phantom, indicating an axial resolution of 69.0 μm and lateral resolution of 262.5 μm. Later, in vivo imaging performance was characterised in the oesophagus and small intestine of anaesthetized pigs. The reconstructed images demonstrate clear layer differentiation of the lumen wall. The tissue thicknesses measured from the B-scan images show good agreement with ex vivo images from the literature. The high-resolution ultrasound images in the in vivo porcine model achieved with this device is an encouraging preliminary step in the translation of these devices toward future clinical use.
Collapse
Affiliation(s)
- Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Yaocai Huang
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Rong Liu
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiehan Hong
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peitian Mu
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Holly S Lay
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Gerard Cummins
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Eddie Clutton
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Hairong Zheng
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weibao Qiu
- School of Engineering, University of Glasgow, Glasgow, UK; Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Fraquelli M, Castiglione F, Calabrese E, Maconi G. Impact of intestinal ultrasound on the management of patients with inflammatory bowel disease: how to apply scientific evidence to clinical practice. Dig Liver Dis 2020; 52:9-18. [PMID: 31732443 DOI: 10.1016/j.dld.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Technological improvements and growing sonographers' expertise boost the role of intestinal ultrasound (IUS) in assessing patients with inflammatory bowel diseases (IBD). Non-invasiveness, low cost and good reproducibility make IUS attractive. Leveraging on the Authors' long-term field experience, this review focuses on the IUS role in IBD patients' clinical management. For detecting IBD, particularly Crohn's disease, the IUS parameters - above all the evidence of a thickened bowel wall (BWT) - show very good diagnostic accuracy similar to that of MRI or CT scan. The standard IUS parameters are not accurate enough to detect inflammatory activity, but intravenous contrast-enhanced US (CEUS) is highly accurate in ruling active inflammation out. However, its routinely use remains limited in clinical practice and its parameters need standardization. IUS is accurate in detecting IBD main complications: in particular, fistulae and abscesses. As to stenosis the recent introduction of IUS-based elastographic techniques allows to differentiate prevalently inflammatory from highly fibrotic strictures. IUS proves valid also for monitoring IBD patients. In particular, the evidence of transmural healing, defined as BWT normalization, has got an important prognostic meaning, as associated with better long-term clinical outcomes. Post-surgery CD recurrence can be suggested by early IUS assessment.
Collapse
Affiliation(s)
- Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Fabiana Castiglione
- Gastroenterology, Department of Clinical Medicine and Surgery, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Emma Calabrese
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Maconi
- Gastroenterology Unit, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital, University of Milan, Italy
| |
Collapse
|
12
|
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical EngineeringDivision of Engineering and Applied ScienceCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
13
|
Cummins G, Cox BF, Ciuti G, Anbarasan T, Desmulliez MPY, Cochran S, Steele R, Plevris JN, Koulaouzidis A. Gastrointestinal diagnosis using non-white light imaging capsule endoscopy. Nat Rev Gastroenterol Hepatol 2019; 16:429-447. [PMID: 30988520 DOI: 10.1038/s41575-019-0140-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsule endoscopy (CE) has proved to be a powerful tool in the diagnosis and management of small bowel disorders since its introduction in 2001. However, white light imaging (WLI) is the principal technology used in clinical CE at present, and therefore, CE is limited to mucosal inspection, with diagnosis remaining reliant on visible manifestations of disease. The introduction of WLI CE has motivated a wide range of research to improve its diagnostic capabilities through integration with other sensing modalities. These developments have the potential to overcome the limitations of WLI through enhanced detection of subtle mucosal microlesions and submucosal and/or transmural pathology, providing novel diagnostic avenues. Other research aims to utilize a range of sensors to measure physiological parameters or to discover new biomarkers to improve the sensitivity, specificity and thus the clinical utility of CE. This multidisciplinary Review summarizes research into non-WLI CE devices by organizing them into a taxonomic structure on the basis of their sensing modality. The potential of these capsules to realize clinically useful virtual biopsy and computer-aided diagnosis (CADx) is also reported.
Collapse
Affiliation(s)
- Gerard Cummins
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | | | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Robert Steele
- School of Medicine, University of Dundee, Dundee, UK
| | - John N Plevris
- Centre for Liver and Digestive Disorders, The Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
14
|
Norton JC, Slawinski PR, Lay HS, Martin JW, Cox BF, Cummins G, Desmulliez MP, Clutton RE, Obstein KL, Cochran S, Valdastri P. Intelligent magnetic manipulation for gastrointestinal ultrasound. Sci Robot 2019; 4:eaav7725. [PMID: 31380501 PMCID: PMC6677276 DOI: 10.1126/scirobotics.aav7725] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diagnostic endoscopy in the gastrointestinal tract has remained largely unchanged for decades and is limited to the visualization of the tissue surface, the collection of biopsy samples for diagnoses, and minor interventions such as clipping or tissue removal. In this work, we present the autonomous servoing of a magnetic capsule robot for in-situ, subsurface diagnostics of microanatomy. We investigated and showed the feasibility of closed-loop magnetic control using digitized microultrasound (μUS) feedback; this is crucial for obtaining robust imaging in an unknown and unconstrained environment. We demonstrated the functionality of an autonomous servoing algorithm that uses μUS feedback, both on benchtop trials as well as in-vivo in a porcine model. We have validated this magnetic-μUS servoing in instances of autonomous linear probe motion and were able to locate markers in an agar phantom with 1.0 ± 0.9 mm position accuracy using a fusion of robot localization and μUS image information. This work demonstrates the feasibility of closed-loop robotic μUS imaging in the bowel without the need for either a rigid physical link between the transducer and extracorporeal tools or complex manual manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Keith L. Obstein
- STORM Lab USA, Vanderbilt University, Nashville, USA
- Vanderbilt University Medical Center, Nashville, USA
| | - Sandy Cochran
- University of Glasgow, School of Mechanical Engineering, Glasgow, UK
| | | |
Collapse
|
15
|
Lay HS, Cummins G, Cox BF, Qiu Y, Turcanu MV, McPhillips R, Connor C, Gregson R, Clutton E, Desmulliez MPY, Cochran S. In-Vivo Evaluation of Microultrasound and Thermometric Capsule Endoscopes. IEEE Trans Biomed Eng 2018; 66:632-639. [PMID: 29993482 DOI: 10.1109/tbme.2018.2852715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon, respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a noninvasive manner. Available since 2001, current capsule endoscopes are limited to viewing the mucosal surface only due to their reliance on optical imaging. To overcome this limitation with submucosal imaging, work is under way to implement microultrasound (μUS) imaging in the same form as VCE devices. This paper describes two prototype capsules, termed Sonocap and Thermocap, which were developed respectively to assess the quality of μUS imaging and the maximum power consumption that can be tolerated for such a system. The capsules were tested in vivo in the oesophagus and small bowel of porcine models. Results are presented in the form of μUS B-scans as well as safe temperature readings observed up to 100 mW in both biological regions. These results demonstrate that acoustic coupling and μUS imaging can be achieved in vivo in the lumen of the bowel and the maximum power consumption that is possible for miniature μUS systems.
Collapse
|
16
|
Stewart FR, Qiu Y, Lay HS, Newton IP, Cox BF, Al-Rawhani MA, Beeley J, Liu Y, Huang Z, Cumming DRS, Näthke I, Cochran S. Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy. SENSORS 2017; 17:s17071553. [PMID: 28671642 PMCID: PMC5539857 DOI: 10.3390/s17071553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work.
Collapse
Affiliation(s)
- Fraser R Stewart
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Holly S Lay
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Ian P Newton
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Benjamin F Cox
- School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | | - James Beeley
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - David R S Cumming
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Inke Näthke
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|