1
|
Xiong J, Zhang L, Chen G, Dong P, Tong J, Hua L, Li N, Wen L, Zhu L, Chang W, Jin Y. Associations of CKIP-1 and LOX-1 polymorphisms with the risk of type 2 diabetes mellitus with hypertension among Chinese adults. Acta Diabetol 2024; 61:43-52. [PMID: 37668684 DOI: 10.1007/s00592-023-02175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) and hypertension are common high-incidence diseases, closely related, and have common pathogenic basis such as oxidative stress. Casein kinase 2 interacting protein-1 (CKIP-1) and low-density lipoprotein receptor (LOX-1) are considered to be important factors affect the level of oxidative stress in the body. The main purpose of this study was to explore the relationship between CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 (rs1050283 G > A, rs11053646 C > G) polymorphisms and the risk of hypertension and diabetes, and try to find new candidate genes for diabetes and diabetes with hypertension etiology in Chinese population. METHODS 574 T2DM patients and 597 controls frequently matched by age and sex were selected for genotyping of CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 gene (rs1050283 G > A, rs11053646 C > G). Logistic regression was used to analyze the correlation between different genotypes and the risk of T2DM and T2DM with hypertension, and the results were expressed as odds ratio (OR) and 95% confidence interval (95% CI). RESULTS We found that the risk of T2DM in the AA + AT genotype of rs6693817 was higher than that in the TT genotype in Chinese population (OR = 1.318, 95%CI: 1.011-1.717, P = 0.041), and the difference was still significant after adjustment (OR = 1.370, 95%CI: 1.043-1.799, Padjusted = 0.024), the difference of heterozygotes (AT vs TT: OR = 1.374, 95%CI: 1.026-1.840, Padjusted = 0.033) was statistically significant. But after Bonferroni correction, the significance of the above sites disappeared. And rs6693817 was associated with the risk of T2DM combined with hypertension before and after adjustment in dominant model (OR = 1.424, 95% CI: 1.038-1.954, P = 0.028; OR = 1.460, 95% CI: 1.057-2.015, Padjusted = 0.021, respectively) and in heterozygote model (OR = 1.499, 95% CI: 1.069-2.102, P = 0.019; OR = 1.562, 95% CI: 1.106-2.207, Padjusted = 0.011, respectively). However, only the statistical significance of the heterozygous model remained after Bonferroni correction. rs2306235, rs1050283 and rs11053646 were not significantly correlated with T2DM and T2DM combined with hypertension risk (P > 0.05). CONCLUSIONS The results suggest that CKIP-1 rs6693817 is related to the susceptibility of Chinese people to T2DM with hypertension, providing a new genetic target for the treatment of diabetes with hypertension with in the future.
Collapse
Affiliation(s)
- Jiajie Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pu Dong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Jiani Tong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Long Hua
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Liying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Weiwei Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| | - Yuelong Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
2
|
Shippy DC, Watters JJ, Ulland TK. Transcriptional response of murine microglia in Alzheimer’s disease and inflammation. BMC Genomics 2022; 23:183. [PMID: 35247975 PMCID: PMC8898509 DOI: 10.1186/s12864-022-08417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most common cause of late-onset dementia. Microglia, the primary innate immune cells of the central nervous system (CNS), have a complex role in AD neuropathology. In the initial stages of AD, microglia play a role in limiting pathology by removing amyloid-β (Aβ) by phagocytosis. In contrast, microglia also release pro-inflammatory cytokines and chemokines to promote neuroinflammation and exacerbate AD neuropathology. Therefore, investigating microglial gene networks could identify new targets for therapeutic strategies for AD. Results We identified 465 differentially expressed genes (DEG) in 5XFAD versus wild-type mice by microarray, 354 DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells using RNA-sequencing (RNA-seq), with 32 DEG common between both datasets. Analyses of the 32 common DEG uncovered numerous molecular functions and pathways involved in Aβ phagocytosis and neuroinflammation associated with AD. Furthermore, multiplex ELISA confirmed the induction of several cytokines and chemokines in LPS-stimulated microglia. Conclusions In summary, AD triggered multiple signaling pathways that regulate numerous genes in microglia, contributing to Aβ phagocytosis and neuroinflammation. Overall, these data identified several regulatory factors and biomarkers in microglia that could be useful in further understanding AD neuropathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08417-8.
Collapse
|
3
|
Faridi A, Yang W, Kelly HG, Wang C, Faridi P, Purcell AW, Davis TP, Chen P, Kent SJ, Ke PC. Differential Roles of Plasma Protein Corona on Immune Cell Association and Cytokine Secretion of Oligomeric and Fibrillar Beta-Amyloid. Biomacromolecules 2019; 20:4208-4217. [PMID: 31600059 DOI: 10.1021/acs.biomac.9b01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a primary neurological disease with no effective cure. A hallmark of AD is the presence of intracellular tangles and extracellular plaques derived from the aberrant aggregation of tau- and beta-amyloid (Aβ). Aβ presents in the brain as well as in cerebrospinal fluid and the circulation, and Aβ toxicity has been attributed to amyloidosis and inflammation, among other causes. In this study, the effects of the plasma protein corona have been investigated with regard to the blood cell association and cytokine secretion of oligomeric (Aβo) and fibrillar Aβ1-42(Aβf), two major forms of the peptide aggregates. Aβo displayed little change in membrane association in whole blood or washed blood (i.e., cells in the absence of plasma proteins) at 37 °C, while Aβf showed a clear preference for binding with all cell types sans plasma proteins. Immune cells exposed to Aβo, but not to Aβf, resulted in significant expression of cytokines IL-6 and TNF measured in real-time by a localized surface plasmon resonance sensor. These observations indicate greater immune cell association and cytokine stimulation of Aβo than Aβf and shed new light on the contrasting toxicities of Aβo and Aβf resulting from their differential capacities in acquiring a plasma protein corona. These results further implicate a close connection between Aβ amyloidosis and immunopathology in AD.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Wen Yang
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Hannah Gabrielle Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity , University of Melbourne , Melbourne , Victoria 3052 , Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Melbourne , Victoria 3052 , Australia
| | - Chuanyu Wang
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Anthony Wayne Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia.,Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Pengyu Chen
- Materials Research and Education Center , Auburn University , Auburn , Alabama 36849 , United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity , University of Melbourne , Melbourne , Victoria 3052 , Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology , University of Melbourne , Melbourne , Victoria 3052 , Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital , Monash University Central Clinical School , Carlton , Victoria 3053 , Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
4
|
Câmara AB. Receptores neurais e a doença de Alzheimer: uma revisão sistemática da literatura sobre as famílias de receptores mais associadas a doença, suas funções e áreas de expressão. JORNAL BRASILEIRO DE PSIQUIATRIA 2019. [DOI: 10.1590/0047-2085000000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RESUMO Objetivo O artigo tem como objetivo determinar as famílias de receptores mais estudadas, envolvidas com a doença de Alzheimer, assim como determinar a região do sistema nervoso na qual mais tipos de receptores são expressos e quais funções dos receptores estão predominantemente associadas com a patologia em questão. O artigo busca mostrar os modelos e métodos mais utilizados nessas pesquisas, resumindo alguns achados e discutindo o impacto desses estudos no conhecimento científico. Métodos Esta revisão utilizou-se de uma metodologia sistemática (Prospero; ID 141957). Resultados Pode-se constatar que os receptores de transcrição nuclear foram os mais estudados. A maior parte desses receptores se expressa no córtex cerebral e hipocampo. Adicionalmente, a maioria das pesquisas avaliou os receptores relacionados com os efeitos benéficos na doença. A eliminação da proteína amiloide ou o bloqueio de vias relacionadas à síntese dessa proteína foram as principais funções desempenhadas por esses receptores. Por fim, as técnicas de imunoistoquímica e reação em cadeia de polimerase em tempo real (RT-PCR), respectivamente, foram as mais utilizadas, e os roedores consistiram no principal modelo de estudo. Conclusões Os receptores de transcrição nuclear, o córtex cerebral, o hipocampo, a micróglia e a proteína beta-amiloide mostraram importância na patogênese da doença de Alzheimer neste estudo.
Collapse
|
5
|
Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, Ikeuchi T, Nakamura K, Yamamoto T. Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients. Dement Geriatr Cogn Dis Extra 2019; 9:53-65. [PMID: 31043964 PMCID: PMC6477484 DOI: 10.1159/000496100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Background/Aims The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive profile and molecular network relations of urinary proteins in AD patients. Methods Urine samples collected from 18 AD patients and 18 age- and sex-matched cognitively normal controls were analyzed by mass spectrometry and semiquantified with the normalized spectral index method. Bioinformatics analyses were performed on proteins which significantly increased by more than 2-fold or decreased by less than 0.5-fold compared to the control (p < 0.05) using DAVID bioinformatics resources and KeyMolnet software. Results The levels of 109 proteins significantly differed between AD patients and controls. Among these, annotation clusters related to lysosomes, complement activation, and gluconeogenesis were significantly enriched. The molecular relation networks derived from these proteins were mainly associated with pathways of lipoprotein metabolism, heat shock protein 90 signaling, matrix metalloproteinase signaling, and redox regulation by thioredoxin. Conclusion Our findings suggest that changes in the urinary proteome of AD patients reflect systemic changes related to AD pathophysiology.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Semizu
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|