1
|
Alessandro C, Sarabadani Tafreshi A, Riener R. Cardiovascular responses to leg-press exercises during head-down tilt. Front Sports Act Living 2024; 6:1396391. [PMID: 39290333 PMCID: PMC11406980 DOI: 10.3389/fspor.2024.1396391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Physical exercise and gravitational load affect the activity of the cardiovascular system. How these factors interact with one another is still poorly understood. Here we investigate how the cardiovascular system responds to leg-press exercise during head-down tilt, a posture that reduces orthostatic stress, limits gravitational pooling, and increases central blood volume. Methods Seventeen healthy participants performed leg-press exercise during head-down tilt at different combinations of resistive force, contraction frequency, and exercise duration (30 and 60 s), leading to different exercise power. Systolic (sBP), diastolic (dBP), mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR) were measured continuously. Cardiovascular responses were evaluated by comparing the values of these signals during exercise recovery to baseline. Mixed models were used to evaluate the effect of exercise power and of individual exercise parameter on the cardiovascular responses. Results Immediately after the exercise, we observed a clear undershoot in sBP (Δ = -7.78 ± 1.19 mmHg), dBP (Δ = -10.37 ± 0.84 mmHg), and MAP (Δ = -8.85 ± 0.85 mmHg), an overshoot in PP (Δ = 7.93 ± 1.13 mmHg), and elevated values of HR (Δ = 33.5 ± 0.94 bpm) compared to baseline (p < 0.0001). However, all parameters returned to similar baseline values 2 min following the exercise (p > 0.05). The responses of dBP, MAP and HR were significantly modulated by exercise power (correlation coefficients: rdBP = -0.34, rMAP = -0.25, rHR = 0.52, p < 0.001). All signals' responses were modulated by contraction frequency (p < 0.05), increasing the undershoot in sBP (Δ = -1.87 ± 0.98 mmHg), dBP (Δ = -4.85 ± 1.01 and Δ = -3.45 ± 0.98 mmHg for low and high resistive force respectively) and MAP (Δ = -3.31 ± 0.75 mmHg), and increasing the overshoot in PP (Δ = 2.57 ± 1.06 mmHg) as well as the value of HR (Δ = 16.8 ± 2.04 and Δ = 10.8 ± 2.01 bpm for low and high resistive force respectively). Resistive force affected only dBP (Δ = -4.96 ± 1.41 mmHg, p < 0.0001), MAP (Δ = -2.97 ± 1.07 mmHg, p < 0.05) and HR (Δ = 6.81 ± 2.81 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.05, depending on the values of resistive force and contraction frequency), and exercise duration affected only HR (Δ = 9.64 ± 2.01 bpm, p < 0.0001). Conclusion Leg exercises caused only immediate cardiovascular responses, potentially due to facilitated venous return by the head-down tilt position. The modulation of dBP, MAP and HR responses by exercise power and that of all signals by contraction frequency may help optimizing exercise prescription in conditions of limited orthostatic stress.
Collapse
Affiliation(s)
- Cristiano Alessandro
- School of Medicine and Surgery, Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Amirehsan Sarabadani Tafreshi
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Furst B, González-Alonso J. The heart, a secondary organ in the control of blood circulation. Exp Physiol 2023. [PMID: 38126953 DOI: 10.1113/ep091387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Circulation of the blood is a fundamental physiological function traditionally ascribed to the pressure-generating function of the heart. However, over the past century the 'cardiocentric' view has been challenged by August Krogh, Ernst Starling, Arthur Guyton and others, based on haemodynamic data obtained from isolated heart preparations and organ perfusion. Their research brought forth experimental evidence and phenomenological observations supporting the concept that cardiac output occurs primarily in response to the metabolic demands of the tissues. The basic tenets of Guyton's venous return model are presented and juxtaposed with their critiques. Developmental biology of the cardiovascular system shows that the blood circulates before the heart has achieved functional integrity and that its movement is intricately connected with the metabolic demands of the tissues. Long discovered, but as yet overlooked, negative interstitial pressure may play a role in assisting the flow returning to the heart. Based on these phenomena, an alternative circulation model has been proposed in which the heart functions like a hydraulic ram and maintains a dynamic equilibrium between the arterial (centrifugal) and venous (centripetal) forces which define the blood's circular movement. In this focused review we introduce some of the salient arguments in support of the proposed circulation model. Finally, we present evidence that exercising muscle blood flow is subject to local metabolic control which upholds optimal perfusion in the face of a substantive rise in muscle vascular conductance, thus lending further support to the permissive role of the heart in the overall control of blood circulation.
Collapse
Affiliation(s)
- Branko Furst
- Department of Anesthesiology, Albany Medical Center, Albany, New York, USA
| | - José González-Alonso
- Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
3
|
Kuwajima K, Kagawa S, Yamane T, Hasegawa H, Makar M, Chakravarty T, Makkar RR, Shiota T. Underestimation of Intraprocedural Tricuspid Valve Pressure Gradient by Echocardiography in Patients Undergoing Tricuspid Transcatheter Edge-to-Edge Repair. J Cardiothorac Vasc Anesth 2023; 37:2161-2163. [PMID: 37481396 DOI: 10.1053/j.jvca.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/24/2023]
Affiliation(s)
- Ken Kuwajima
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Shunsuke Kagawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Takafumi Yamane
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hiroko Hasegawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Moody Makar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Takahiro Shiota
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
4
|
Kenny JES. A framework for heart-lung interaction and its application to prone position in the acute respiratory distress syndrome. Front Physiol 2023; 14:1230654. [PMID: 37614757 PMCID: PMC10443730 DOI: 10.3389/fphys.2023.1230654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
While both cardiac output (Qcirculatory) and right atrial pressure (PRA) are important measures in the intensive care unit (ICU), they are outputs of the system and not determinants. That is to say, in a model of the circulation wherein venous return and cardiac function find equilibrium at an 'operating point' (OP, defined by the PRA on the x-axis and Qcirculatory on the y-axis) both the PRA and Qcirculatory are, necessarily, dependent variables. A simplified geometrical approximation of Guyton's model is put forth to illustrate that the independent variables of the system are: 1) the mean systemic filling pressure (PMSF), 2) the pressure within the pericardium (PPC), 3) cardiac function and 4) the resistance to venous return. Classifying independent and dependent variables is clinically-important for therapeutic control of the circulation. Recent investigations in patients with acute respiratory distress syndrome (ARDS) have illuminated how PMSF, cardiac function and the resistance to venous return change when placing a patient in prone. Moreover, the location of the OP at baseline and the intimate physiological link between the heart and the lungs also mediate how the PRA and Qcirculatory respond to prone position. Whereas turning a patient from supine to prone is the focus of this discussion, the principles described within the framework apply equally-well to other more common ICU interventions including, but not limited to, ventilator management, initiating vasoactive medications and providing intravenous fluids.
Collapse
Affiliation(s)
- Jon-Emile S. Kenny
- Health Sciences North Research Institute, Sudbury, ON, Canada
- Flosonics Medical, Toronto, ON, Canada
| |
Collapse
|
5
|
Desebbe O, Vallier S, Gergelé L, Alexander B, Marx A, Ben Jaoude E, Kato H, Toubal L, Berna A, Duranteau J, Vincent JL, Joosten A. Diagnostic accuracy of the peripheral venous pressure variation induced by an alveolar recruitment maneuver to predict fluid responsiveness during high-risk abdominal surgery. BMC Anesthesiol 2023; 23:249. [PMID: 37481588 PMCID: PMC10362688 DOI: 10.1186/s12871-023-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND In patients undergoing high-risk surgery, it is recommended to titrate fluid administration using stroke volume or a dynamic variable of fluid responsiveness (FR). However, this strategy usually requires the use of a hemodynamic monitor and/or an arterial catheter. Recently, it has been shown that variations of central venous pressure (ΔCVP) during an alveolar recruitment maneuver (ARM) can predict FR and that there is a correlation between CVP and peripheral venous pressure (PVP). This prospective study tested the hypothesis that variations of PVP (ΔPVP) induced by an ARM could predict FR. METHODS We studied 60 consecutive patients scheduled for high-risk abdominal surgery, excluding those with preoperative cardiac arrhythmias or right ventricular dysfunction. All patients had a peripheral venous catheter, a central venous catheter and a radial arterial catheter linked to a pulse contour monitoring device. PVP was always measured via an 18-gauge catheter inserted at the antecubital fossa. Then an ARM consisting of a standardized gas insufflation to reach a plateau of 30 cmH2O for 30 s was performed before skin incision. Invasive mean arterial pressure (MAP), pulse pressure, heart rate, CVP, PVP, pulse pressure variation (PPV), and stroke volume index (SVI) were recorded before ARM (T1), at the end of ARM (T2), before volume expansion (T3), and one minute after volume expansion (T4). Receiver-operating curves (ROC) analysis with the corresponding grey zone approach were performed to assess the ability of ∆PVP (index test) to predict FR, defined as an ≥ 10% increase in SVI following the administration of a 4 ml/kg balanced crystalloid solution over 5 min. RESULTS ∆PVP during ARM predicted FR with an area under the ROC curve of 0.76 (95%CI, 0.63 to 0.86). The optimal threshold determined by the Youden Index was a ∆PVP value of 5 mmHg (95%CI, 4 to 6) with a sensitivity of 66% (95%CI, 47 to 81) and a specificity of 82% (95%CI, 63 to 94). The AUC's for predicting FR were not different between ΔPVP, ΔCVP, and PPV. CONCLUSION During high-risk abdominal surgery, ∆PVP induced by an ARM can moderately predict FR. Nevertheless, other hemodynamic variables did not perform better.
Collapse
Affiliation(s)
- Olivier Desebbe
- Department of Anesthesiology and Perioperative Medicine, Sauvegarde Clinic, Ramsay Sante, Lyon, France
| | - Sylvain Vallier
- Department of Anesthesiology and Intensive Care, Elsan Alpes-Belledonne Clinic, Grenoble, France
| | - Laurent Gergelé
- Department of Anesthesiology and Intensive Care, Ramsay Sante HPL Clinic, Saint-Etienne, France
| | - Brenton Alexander
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Alexandre Marx
- Department of Anesthesiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elias Ben Jaoude
- Department of Anesthesiology and Intensive Care, Université Paris-Sud, Paul Brousse Hospital, Assistance Publique Hôpitaux de Paris (APHP), 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care, Université Paris-Sud, Paul Brousse Hospital, Assistance Publique Hôpitaux de Paris (APHP), 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France
| | - Leila Toubal
- Department of Anesthesiology and Intensive Care, Université Paris-Sud, Paul Brousse Hospital, Assistance Publique Hôpitaux de Paris (APHP), 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France
| | - Antoine Berna
- Department of Anesthesiology and Perioperative Medicine, Sauvegarde Clinic, Ramsay Sante, Lyon, France
| | - Jacques Duranteau
- Department of Anesthesiology and Intensive Care, Université Paris-Sud, Paul Brousse Hospital, Assistance Publique Hôpitaux de Paris (APHP), 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Joosten
- Department of Anesthesiology and Intensive Care, Université Paris-Sud, Paul Brousse Hospital, Assistance Publique Hôpitaux de Paris (APHP), 12 Avenue Paul Vaillant Couturier, Villejuif, 94800, France.
| |
Collapse
|
6
|
Lai C, Shi R, Beurton A, Moretto F, Ayed S, Fage N, Gavelli F, Pavot A, Dres M, Teboul JL, Monnet X. The increase in cardiac output induced by a decrease in positive end-expiratory pressure reliably detects volume responsiveness: the PEEP-test study. Crit Care 2023; 27:136. [PMID: 37031182 PMCID: PMC10082988 DOI: 10.1186/s13054-023-04424-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND In patients on mechanical ventilation, positive end-expiratory pressure (PEEP) can decrease cardiac output through a decrease in cardiac preload and/or an increase in right ventricular afterload. Increase in central blood volume by fluid administration or passive leg raising (PLR) may reverse these phenomena through an increase in cardiac preload and/or a reopening of closed lung microvessels. We hypothesized that a transient decrease in PEEP (PEEP-test) may be used as a test to detect volume responsiveness. METHODS Mechanically ventilated patients with PEEP ≥ 10 cmH2O ("high level") and without spontaneous breathing were prospectively included. Volume responsiveness was assessed by a positive PLR-test, defined as an increase in pulse-contour-derived cardiac index (CI) during PLR ≥ 10%. The PEEP-test consisted in reducing PEEP from the high level to 5 cmH2O for one minute. Pulse-contour-derived CI (PiCCO2) was monitored during PLR and the PEEP-test. RESULTS We enrolled 64 patients among whom 31 were volume responsive. The median increase in CI during PLR was 14% (11-16%). The median PEEP at baseline was 12 (10-15) cmH2O and the PEEP-test resulted in a median decrease in PEEP of 7 (5-10) cmH2O, without difference between volume responsive and unresponsive patients. Among volume responsive patients, the PEEP-test induced a significant increase in CI of 16% (12-20%) (from 2.4 ± 0.7 to 2.9 ± 0.9 L/min/m2, p < 0.0001) in comparison with volume unresponsive patients. In volume unresponsive patients, PLR and the PEEP-test increased CI by 2% (1-5%) and 6% (3-8%), respectively. Volume responsiveness was predicted by an increase in CI > 8.6% during the PEEP-test with a sensitivity of 96.8% (95% confidence interval (95%CI): 83.3-99.9%) and a specificity of 84.9% (95%CI 68.1-94.9%). The area under the receiver operating characteristic curve of the PEEP-test for detecting volume responsiveness was 0.94 (95%CI 0.85-0.98) (p < 0.0001 vs. 0.5). Spearman's correlation coefficient between the changes in CI induced by PLR and the PEEP-test was 0.76 (95%CI 0.63-0.85, p < 0.0001). CONCLUSIONS A CI increase > 8.6% during a PEEP-test, which consists in reducing PEEP to 5 cmH2O, reliably detects volume responsiveness in mechanically ventilated patients with a PEEP ≥ 10 cmH2O. Trial registration ClinicalTrial.gov (NCT 04,023,786). Registered July 18, 2019. Ethics Committee approval CPP Est III (N° 2018-A01599-46).
Collapse
Affiliation(s)
- Christopher Lai
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France.
| | - Rui Shi
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Alexandra Beurton
- Service de Médecine intensive - Réanimation, AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
- INSERM, UMRS_1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Francesca Moretto
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Soufia Ayed
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Nicolas Fage
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Francesco Gavelli
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Arthur Pavot
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Martin Dres
- Service de Médecine intensive - Réanimation, AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
- INSERM, UMRS_1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Jean-Louis Teboul
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Xavier Monnet
- AP-HP, Service de médecine intensive-réanimation, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Kuwajima K, Kagawa S, Yamane T, Hasegawa H, Makar M, Makkar RR, Shiota T. Comparison of Residual Tricuspid Regurgitation Severity Assessed by Intraprocedural and Postprocedural Echocardiography in Patients Undergoing Transcatheter Tricuspid Valve Repair. J Cardiothorac Vasc Anesth 2022; 36:4555-4557. [PMID: 36180287 DOI: 10.1053/j.jvca.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ken Kuwajima
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Shunsuke Kagawa
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Takafumi Yamane
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Hiroko Hasegawa
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Moody Makar
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA
| | - Takahiro Shiota
- Smidt Heart Institute, Cedars-Sinai Medical Center Los Angeles, CA.
| |
Collapse
|
8
|
Right ventricular failure in left heart disease: from pathophysiology to clinical manifestations and prognosis. Heart Fail Rev 2022:10.1007/s10741-022-10282-2. [PMID: 36284079 PMCID: PMC9596338 DOI: 10.1007/s10741-022-10282-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
Right heart failure (RHF) is a clinical syndrome in which symptoms and signs are caused by dysfunction and/or overload of the right heart structures, predominantly the right ventricle (RV), resulting in systemic venous hypertension, peripheral oedema and finally, the impaired ability of the right heart to provide tissue perfusion. Pathogenesis of RHF includes the incompetence of the right heart to maintain systemic venous pressure sufficiently low to guarantee an optimal venous return and to preserve renal function. Virtually, all myocardial diseases involving the left heart may be responsible for RHF. This may result from coronary artery disease, hypertension, valvular heart disease, cardiomyopathies and myocarditis. The most prominent clinical signs of RHF comprise swelling of the neck veins with an elevation of jugular venous pressure and ankle oedema. As the situation worsens, fluid accumulation becomes generalised with extensive oedema of the legs, congestive hepatomegaly and eventually ascites. Diagnosis of RHF requires the presence of signs of elevated right atrial and venous pressures, including dilation of neck veins, with at least one of the following criteria: (1) compromised RV function; (2) pulmonary hypertension; (3) peripheral oedema and congestive hepatomegaly. Early recognition of RHF and identifying the underlying aetiology as well as triggering factors are crucial to treating patients and possibly reversing the clinical manifestations effectively and improving prognosis.
Collapse
|
9
|
Luo JC, Zhang YJ, Huang DL, Wang H, Luo MH, Hou JY, Hao GW, Su Y, Tu GW, Luo Z. Recombinant human brain natriuretic peptide ameliorates venous return function in congestive heart failure. ESC Heart Fail 2022; 9:2635-2644. [PMID: 35611916 PMCID: PMC9288780 DOI: 10.1002/ehf2.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Recombinant human brain natriuretic peptide (rh‐BNP) is commonly used as a decongestive therapy. This study aimed to investigate the instant effects of rh‐BNP on cardiac output and venous return function in post‐cardiotomy patients with congestive heart failure (CHF). Methods and results Twenty‐four post‐cardiotomy heart failure patients were enrolled and received a standard loading dose of rh‐BNP. Haemodynamic monitoring was performed via a pulmonary artery catheter before and after the administration of rh‐BNP. The cardiac output and venous return functions were estimated by depicting Frank‐Starling and Guyton curves. After rh‐BNP infusion, variables reflecting cardiac congestion and venous return function, such as pulmonary artery wedge pressure, mean systemic filling pressure (Pmsf) and venous return resistance index (VRRI), reduced from 15 ± 3 to 13 ± 3 mmHg, from 32 ± 7 to 28 ± 7 mmHg and from 6.7 ± 2.6 to 5.7 ± 1.8 mmHg min m2/L, respectively. Meanwhile, cardiac index, stroke volume index, and the cardiac output function curve remained unchanged per se. The decline in Pmsf [−13% (−22% to −8%)] and VRRI [−12% (−25% to −5%)] was much greater than that in the systemic vascular resistance index [−7% (−14% to 0%)]. In the subgroup analysis of reduced ejection fraction (<40%) patients, the aforementioned changes were more significant. Conclusions rh‐BNP might ameliorate venous return rather than cardiac output function in post‐cardiotomy CHF patients.
Collapse
Affiliation(s)
- Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Jie Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan-Lei Huang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Yi Hou
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang-Wei Hao
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China
| |
Collapse
|
10
|
Persichini R, Lai C, Teboul JL, Adda I, Guérin L, Monnet X. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care 2022; 26:150. [PMID: 35610620 PMCID: PMC9128096 DOI: 10.1186/s13054-022-04024-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 01/15/2023] Open
Abstract
Venous return is the flow of blood from the systemic venous network towards the right heart. At steady state, venous return equals cardiac output, as the venous and arterial systems operate in series. However, unlike the arterial one, the venous network is a capacitive system with a high compliance. It includes a part of unstressed blood, which is a reservoir that can be recruited via sympathetic endogenous or exogenous stimulation. Guyton’s model describes the three determinants of venous return: the mean systemic filling pressure, the right atrial pressure and the resistance to venous return. Recently, new methods have been developed to explore such determinants at the bedside. In this narrative review, after a reminder about Guyton’s model and current methods used to investigate it, we emphasize how Guyton’s physiology helps understand the effects on cardiac output of common treatments used in critically ill patients.
Collapse
Affiliation(s)
- Romain Persichini
- Service de Réanimation et Soins Continus, Centre Hospitalier de Saintonge, 11 Boulevard Ambroise Paré, 17108, Saintes cedex, France.
| | - Christopher Lai
- Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
| | - Jean-Louis Teboul
- Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
| | - Imane Adda
- Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
| | - Laurent Guérin
- Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
| | - Xavier Monnet
- Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital Bicêtre, DMU CORREVE, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Chalkias A, Laou E, Papagiannakis N, Varvarousi G, Ragias D, Koutsovasilis A, Makris D, Varvarousis D, Iacovidou N, Pantazopoulos I, Xanthos T. Determinants of venous return in steady-state physiology and asphyxia-induced circulatory shock and arrest: an experimental study. Intensive Care Med Exp 2022; 10:13. [PMID: 35412084 PMCID: PMC9005574 DOI: 10.1186/s40635-022-00440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/05/2022] [Indexed: 01/02/2023] Open
Abstract
Background Mean circulatory filling pressure (Pmcf) provides information on stressed volume and is crucial for maintaining venous return. This study investigated the Pmcf and other determinants of venous return in dysrhythmic and asphyxial circulatory shock and arrest. Methods Twenty Landrace/Large-White piglets were allocated into two groups of 10 animals each. In the dysrhythmic group, ventricular fibrillation was induced with a 9 V cadmium battery, while in the asphyxia group, cardiac arrest was induced by stopping and disconnecting the ventilator and clamping the tracheal tube at the end of exhalation. Mean circulatory filling pressure was calculated using the equilibrium mean right atrial pressure at 5–7.5 s after the onset of cardiac arrest and then every 10 s until 1 min post-arrest. Successful resuscitation was defined as return of spontaneous circulation (ROSC) with a MAP of at least 60 mmHg for a minimum of 5 min. Results After the onset of asphyxia, a ΔPmca increase of 0.004 mmHg, 0.01 mmHg, and 1.26 mmHg was observed for each mmHg decrease in PaO2, each mmHg increase in PaCO2, and each unit decrease in pH, respectively. Mean Pmcf value in the ventricular fibrillation and asphyxia group was 14.81 ± 0.5 mmHg and 16.04 ± 0.6 mmHg (p < 0.001) and decreased by 0.031 mmHg and 0.013 mmHg (p < 0.001), respectively, for every additional second passing after the onset of cardiac arrest. With the exception of the 5–7.5 s time interval, post-cardiac arrest right atrial pressure was significantly higher in the asphyxia group. Mean circulatory filling pressure at 5 to 7.5 s after cardiac arrest predicted ROSC in both groups, with a cut-off value of 16 mmHg (AUC = 0.905, p < 0.001). Conclusion Mean circulatory filling pressure was higher in hypoxic hypercapnic conditions and decreased at a lower rate after cardiac arrest compared to normoxemic and normocapnic state. A Pmcf cut-off point of 16 mmHg at 5–7.5 s after cardiac arrest can highly predict ROSC. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00440-z.
Collapse
|
12
|
Berger D, Wigger O, de Marchi S, Grübler MR, Bloch A, Kurmann R, Stalder O, Bachmann KF, Bloechlinger S. The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study. Clin Res Cardiol 2022; 111:705-719. [PMID: 35381904 PMCID: PMC9151717 DOI: 10.1007/s00392-022-02014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
Background Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown. Methods Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure–volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons. Results τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E’ septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002]. Conclusions PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT02267291, registered 17. October 2014. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-022-02014-1.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Olivier Wigger
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Stefano de Marchi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin R Grübler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Bloch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Zentrum Für Intensivmedizin, Kantonsspital Luzern, Luzern, Switzerland
| | - Reto Kurmann
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Luzern, Luzern, Switzerland
| | | | - Kaspar Felix Bachmann
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Zentrum Für Intensivmedizin, Kantonsspital Luzern, Luzern, Switzerland
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital,, University of Bern, Bern, Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Klinik Für Kardiologie, Kantonsspital Winterthur, Winterthur, Switzerland
| |
Collapse
|
13
|
Dynamic Indices Fail to Predict Fluid Responsiveness in Patients Undergoing One-Lung Ventilation for Thoracoscopic Surgery. J Clin Med 2021; 10:jcm10112335. [PMID: 34071746 PMCID: PMC8198031 DOI: 10.3390/jcm10112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Thoracic surgery using CO2 insufflation maintains closed-chest one-lung ventilation (OLV) that may provide the necessary heart–lung interaction for the dynamic indices to predict fluid responsiveness. We studied whether pulse pressure variation (PPV) and stroke volume variation (SVV) can predict fluid responsiveness during thoracoscopic surgery. Forty patients were enrolled in the study. OLV was performed with a tidal volume of 6 mL/kg at a positive end-expiratory pressure of 5 cm H2O, while CO2 was insufflated to the contralateral side at 8 mm Hg. Patients whose stroke volume index (SVI) increased ≥15% after fluid challenge (7 mL/kg) were defined as fluid responders. The predictive ability of PPV and SVV on fluid responsiveness was investigated using the area under the receiver-operator characteristic curve (AUROC), which was also assessed according to the right or left lateral decubitus position considering the intrathoracic location of the right-sided superior vena cava. AUROCs of PPV and SVV for predicting fluid responsiveness were 0.65 (95% confidence interval 0.47–0.83, p = 0.113) and 0.64 (95% confidence interval 0.45–0.82, p = 0.147), respectively. The AUROCs of indices did not exhibit any statistical significance according to position. Dynamic indices of preload cannot predict fluid responsiveness during one-lung ventilation with CO2 gas insufflation.
Collapse
|
14
|
Valenti E, Moller PW, Takala J, Berger D. Collapsibility of caval vessels and right ventricular afterload: decoupling of stroke volume variation from preload during mechanical ventilation. J Appl Physiol (1985) 2021; 130:1562-1572. [PMID: 33734829 DOI: 10.1152/japplphysiol.01039.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collapsibility of caval vessels and stroke volume and pulse pressure variations (SVV, PPV) are used as indicators of volume responsiveness. Their behavior under increasing airway pressures and changing right ventricular afterload is incompletely understood. If the phenomena of SVV and PPV augmentation are manifestations of decreasing preload, they should be accompanied by decreasing transmural right atrial pressures. Eight healthy pigs equipped with ultrasonic flow probes on the pulmonary artery were exposed to positive end-expiratory pressure of 5 and 10 cmH2O and three volume states (Euvolemia, defined as SVV < 10%, Bleeding, and Retransfusion). SVV and PPV were calculated for the right and PPV for the left side of the circulation at increasing inspiratory airway pressures (15, 20, and 25 cmH2O). Right ventricular afterload was assessed by surrogate flow profile parameters. Transmural pressures in the right atrium and the inferior and superior caval vessels (IVC and SVC) were determined. Increasing airway pressure led to increases in ultrasonic surrogate parameters of right ventricular afterload, increasing transmural pressures in the right atrium and SVC, and a drop in transmural IVC pressure. SVV and PPV increased with increasing airway pressure, despite the increase in right atrial transmural pressure. Right ventricular stroke volume variation correlated with indicators of right ventricular afterload. This behavior was observed in both PEEP levels and all volume states. Stroke volume variation may reflect changes in right ventricular afterload rather than changes in preload.NEW & NOTEWORTHY Stroke volume variation and pulse pressure variation are used as indicators of preload or volume responsiveness of the heart. Our study shows that these variations are influenced by changes in right ventricular afterload and may therefore reflect right ventricular failure rather than pure volume responsiveness. A zone of collapse detaches the superior vena cava and its diameter variation from the right atrium.
Collapse
Affiliation(s)
- Elisa Valenti
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland.,Intensive Care Unit and Department of Intensive Care, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Per W Moller
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, SV Hospital Group, Alingsas, Sweden
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Lackner I, Weber B, Miclau T, Holzwarth N, Baur M, Gebhard F, Teuben M, Halvachizadeh S, Cinelli P, Pfeifer R, Lipiski M, Cesarovic N, Haffner-Luntzer M, Pape HC, Kalbitz M. Reaming of femoral fractures with different reaming irrigator aspirator systems shows distinct effects on cardiac function after experimental polytrauma. J Orthop Res 2020; 38:2608-2618. [PMID: 32827323 DOI: 10.1002/jor.24830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
Cardiac injuries are recorded after multiple trauma and are associated with a poor patient outcome. Reaming prior to locked intramedullary nailing is a frequently used technique to stabilize femoral diaphysis fractures. However, in polytraumatized patients, complications such as fat emboli and acute respiratory distress syndrome have been associated with reaming. The reaming irrigator aspirator (RIA) system provides concomitant irrigation and suction of the intramedullary contents, and should, therefore, reduce reaming-associated complications. The aim of the study was to investigate cardiac function after multiple trauma with regard to two different RIA devices (RIAI vs RIAII). 15 male pigs were included in the study. Pigs received either sham treatment or multiple trauma (chest trauma, femur fracture, liver laceration, and hemorrhagic shock), followed by intramedullary nailing after reaming with either the RIAI or RIAII system (RIAII: reduced diameter of the reamer, improved control of irrigation and suction). Cardiac function was assessed by transesophageal echocardiography and systemic inflammation as well as local cardiac damage examined. Pigs of both treatment groups showed impaired cardiac function, valvular insufficiency, and cardiac damage. Systemic inflammation and local cardiac alterations were observed which might contribute to early myocardial damage in vivo. Multiple trauma including long-bone fracture and subsequent intramedullary reaming induces cardiac dysfunction and valvular insufficiency, which might be linked to both mechanical cardiac injury and increased systemic inflammation. 6 hours after trauma there are less differences between RIAI and RIAII treatment with regard to post-traumatic cardiac consequences in multiple injured pigs, indicating no beneficial effect of RIAII over RIAI.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, California
| | - Nina Holzwarth
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | - Michel Teuben
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Paolo Cinelli
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
16
|
van Loon LM, van der Hoeven H, Veltink PH, Lemson J. The inspiration hold maneuver is a reliable method to assess mean systemic filling pressure but its clinical value remains unclear. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1390. [PMID: 33313135 PMCID: PMC7723632 DOI: 10.21037/atm-20-3540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The upstream pressure for venous return (VR) is considered to be a combined conceptual blood pressure of the systemic vessels: the mean systemic filling pressure (MSFP). The relevance of estimating the MSFP during dynamic changes of the circulation at the bedside is controversial. Herein, we studied the effect of high ventilatory pressures on the relationship between VR and central venous pressure (CVP). Methods In 9 healthy pigs under anaesthesia and mechanically ventilated, MSFP was estimated from extrapolated VR versus CVP relationships during inspiratory hold maneuvers (IHMs) with different levels of ventilatory pressure (Pvent). MSFP was measure 3 times per animal during euvolemia and hypovolemia. Hypovolemia was induced by bleeding with 10 mL/kg. The estimated MSFP values were compared to the blood pressure recording after induced ventricle fibrillation (i.e., mean circulatory filling pressure). Results Our results revealed a strong linear correlation between VR and CVP [R2 of 0.92 (range, 0.67–0.99)], during IHMs with different levels of Pvent. Volume status significantly alters the resulting MSFP, 20±1 and 16±2 mmHg for euvolemia and hypovolemia respectively. This estimation of the MSFP was strongly correlated—but not interchangeable—to the blood pressure recording after induced ventricle fibrillation (R2=0.8 and P=0.045). Conclusions In conclusion, we showed a strong linear correlation between VR and CVP—when applying IHMs with high levels of Pvent—however the clinical applicability of this method to guide volume therapy in its current form is improbable.
Collapse
Affiliation(s)
- Lex M van Loon
- Cardiovascular and Respiratory Physiology Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Hans van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Peter H Veltink
- Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Joris Lemson
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Heimann S, Stodtmeister R, Pillunat LE, Terai N. The retinal venous pressure at different levels of airway pressure. Graefes Arch Clin Exp Ophthalmol 2020; 258:2419-2424. [DOI: 10.1007/s00417-020-04796-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022] Open
|
18
|
Hoff IE, Hisdal J, Landsverk SA, Røislien J, Kirkebøen KA, Høiseth LØ. Respiratory variations in pulse pressure and photoplethysmographic waveform amplitude during positive expiratory pressure and continuous positive airway pressure in a model of progressive hypovolemia. PLoS One 2019; 14:e0223071. [PMID: 31560715 PMCID: PMC6764667 DOI: 10.1371/journal.pone.0223071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Respiratory variations in pulse pressure (dPP) and photoplethysmographic waveform amplitude (dPOP) are used for evaluation of volume status in mechanically ventilated patients. Amplification of intrathoracic pressure changes may enable their use also during spontaneous breathing. We investigated the association between the degree of hypovolemia and dPP and dPOP at different levels of two commonly applied clinical interventions; positive expiratory pressure (PEP) and continuous positive airway pressure (CPAP). METHODS 20 healthy volunteers were exposed to progressive hypovolemia by lower body negative pressure (LBNP). PEP of 0 (baseline), 5 and 10 cmH2O was applied by an expiratory resistor and CPAP of 0 (baseline), 5 and 10 cmH2O by a facemask. dPP was obtained non-invasively with the volume clamp method and dPOP from a pulse oximeter. Central venous pressure was measured in 10 subjects. Associations between changes were examined using linear mixed-effects regression models. RESULTS dPP increased with progressive LBNP at all levels of PEP and CPAP. The LBNP-induced increase in dPP was amplified by PEP 10 cmH20. dPOP increased with progressive LBNP during PEP 5 and PEP 10, and during all levels of CPAP. There was no additional effect of the level of PEP or CPAP on dPOP. Progressive hypovolemia and increasing levels of PEP were reflected by increasing respiratory variations in CVP. CONCLUSION dPP and dPOP reflected progressive hypovolemia in spontaneously breathing healthy volunteers during PEP and CPAP. An increase in PEP from baseline to 10 cmH2O augmented the increase in dPP, but not in dPOP.
Collapse
Affiliation(s)
- Ingrid Elise Hoff
- Norwegian Air Ambulance Foundation, Sentrum, Oslo, Norway
- Department of Anesthesiology, Oslo University Hospital, Nydalen, Oslo, Norway
- * E-mail:
| | - Jonny Hisdal
- Section of Vascular Investigations, Department of Vascular Surgery, Oslo University Hospital, Nydalen, Oslo, Norway
- Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | | | - Jo Røislien
- Norwegian Air Ambulance Foundation, Sentrum, Oslo, Norway
| | | | - Lars Øivind Høiseth
- Department of Anesthesiology, Oslo University Hospital, Nydalen, Oslo, Norway
- Section of Vascular Investigations, Department of Vascular Surgery, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
19
|
Brengelmann GL. Venous return and the physical connection between distribution of segmental pressures and volumes. Am J Physiol Heart Circ Physiol 2019; 317:H939-H953. [PMID: 31518160 DOI: 10.1152/ajpheart.00381.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
More than sixty years ago, Guyton and coworkers related their observations of venous return to a mathematical model. Showing steady-state flow (F) as proportional to the difference between mean systemic pressure (Pms) and right atrial pressure (Pra), the model fit their data. The parameter defined by the ratio (Pms - Pra)/F, first called an "impedance," came to be called the "resistance to venous return." The interpretation that Pra opposes Pms and that, to increase output, the heart must act to reduce back pressure at the right atrium was widely accepted. Today, the perceived importance of Pms is evident in the efforts to find reliable ways to estimate it in patients. This article reviews concepts about venous return, criticizing some as inconsistent with elementary physical principles. After review of basic background topics-the steady-state vascular compliance; stressed versus unstressed volume-simulations from a multicompartment model based on data and definitions from Rothe's classical review of the venous system are presented. They illustrate the obligatory connection between flow-dependent compartment pressures and the distribution of volume among vascular compartments. An appendix shows that the pressure profile can be expressed either as decrements relative to arterial pressure or as increments relative to Pra (the option taken in the original model). Conclusion: The (Pms - Pra)/F formulation was never about Pms physically driving venous return; it was about how intravascular volume distributes among compliant compartments in accordance with their flow-dependent distending pressures, arbitrarily expressed relative to Pra rather than arterial pressure.
Collapse
Affiliation(s)
- George L Brengelmann
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Dalla K, Bech-Hanssen O, Ricksten SE. General anesthesia and positive pressure ventilation suppress left and right ventricular myocardial shortening in patients without myocardial disease - a strain echocardiography study. Cardiovasc Ultrasound 2019; 17:16. [PMID: 31400770 PMCID: PMC6689330 DOI: 10.1186/s12947-019-0165-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Myocardial deformation imaging using speckle-tracking echocardiography to assess global longitudinal strain (GLS) is today considered a more sensitive measure of left ventricular (LV) systolic function than ejection fraction. General anesthesia and positive pressure ventilation (PPV) are known to change the right ventricular (RV) and LV loading conditions. However, little is known about the effects of anesthesia and PPV on RV free wall and LV GLS. We studied the influence of general anesthesia and PPV on RV and LV longitudinal strain in patients without myocardial disease. METHODS Twenty-one patients scheduled for non-cardiac surgery were included. The baseline examination was performed on the un-premedicated patients within 60 min of anesthesia. The second examination was performed 10-15 min after induction of anesthesia (propofol, remifentanil), intubation and start of PPV. The examinations included apical four-, two- and three-chamber projections, mitral and aortic Doppler flow velocities and tissue Doppler velocities of tricuspid and mitral annulus. LV end-systolic elastance (Ees) and aortic elastance were determined (Ea). RESULTS General anesthesia and PPV reduced the mean arterial blood pressure (- 29%, p < 0.0019), stroke volume index (- 13%, p < 0.001) and cardiac index (- 23%, p < 0.001). RV end-diastolic area index and LV end-diastolic volume index decreased significantly, while systemic vascular resistance was not significantly affected. Ees decreased significantly with the induction of anaesthesia (- 23%, p = 0.002), while there was a trend for a decrease in Ea (p = 0.053). The ventriculo-arterial coupling, Ea/Ees, was not significantly affected by the anesthetics and PPV. The LV GLS decreased from - 19.1 ± 2.3% to - 17.3 ± 2.9% (p < 0.001) and RV free wall strain decreased from - 26.5 ± 3.9% to - 24.1 ± 4.2% (p = 0.001). One patient (5%) had at baseline a LV GLS > - 16% compared with 6 patients (28%) during general anesthesia and PPV. Three patients (14%) had a RV free wall strain > - 24% compared to 8 patients (38%) during general anesthesia and PPV. CONCLUSIONS General anesthesia and PPV reduces systolic LV and RV function to levels considered indicating dysfunction in a substantial proportion of patients without myocardial disease.
Collapse
Affiliation(s)
- Keti Dalla
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Odd Bech-Hanssen
- Department of Clinical Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sven-Erik Ricksten
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Brengelmann GL. Venous return, mean systemic pressure and getting the right answer for the wrong reason. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:185. [PMID: 31168466 DOI: 10.21037/atm.2019.03.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- George L Brengelmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Berger D, Moller PW, Takala J. Reply to "Is the Guytonian framework justified in explaining heart lung interactions?" and "Venous return, mean systemic pressure and getting the right answer for the wrong reason". ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:186. [PMID: 31169266 PMCID: PMC6526252 DOI: 10.21037/atm.2019.04.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 08/25/2023]
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Per W. Moller
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital Östra, Gothenburg, Sweden
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|