1
|
Parenti G, Fecarotta S, Alagia M, Attaianese F, Verde A, Tarallo A, Gragnaniello V, Ziagaki A, Guimaraes MJ, Aguiar P, Hahn A, Azevedo O, Donati MA, Kiec-Wilk B, Scarpa M, van der Beek NAME, Del Toro Riera M, Germain DP, Huidekoper H, van den Hout JMP, van der Ploeg AT. The European reference network for metabolic diseases (MetabERN) clinical pathway recommendations for Pompe disease (acid maltase deficiency, glycogen storage disease type II). Orphanet J Rare Dis 2024; 19:408. [PMID: 39482698 PMCID: PMC11529438 DOI: 10.1186/s13023-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Clinical pathway recommendations (CPR) are based on existing guidelines and deliver a short overview on how to deal with a specific diagnosis, resulting therapy and follow-up. In this paper we propose a methodology for developing CPRs for Pompe disease, a metabolic myopathy caused by deficiency of lysosomal acid alpha-glucosidase. The CPR document was developed within the activities of the MetabERN, a non-profit European Reference Network for Metabolic Diseases established by the European Union. A working group was selected among members of the MetabERN lysosomal storage disease subnetwork, with specific expertise in the care of Pompe disease, and patient support group representatives. The working strategy was based on a systematic literature search to develop a database, followed by quality assessment of the studies selected from the literature, and by the development of the CPR document according to a matrix provided by MetabERN. Quality assessment of the literature and collection of citations was conducted according to the AGREE II criteria and Grading of Recommendations, Assessment, Development and Evaluation methodology. General aspects were addressed in the document, including pathophysiology, genetics, frequency, classification, manifestations and clinical approach, laboratory diagnosis and multidisciplinary evaluation, therapy and supportive measures, follow-up, monitoring, and pregnancy. The CPR document that was developed was intended to be a concise and easy-to-use tool for standardization of care for patients among the healthcare providers that are members of the network or are involved in the care for Pompe disease patients.
Collapse
Affiliation(s)
- Giancarlo Parenti
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy.
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy.
| | - Simona Fecarotta
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Marianna Alagia
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Federica Attaianese
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Alessandra Verde
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Antonietta Tarallo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Vincenza Gragnaniello
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Athanasia Ziagaki
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Endocrinology and Metabolism, Center of Excellence for Rare Metabolic Diseases in Adults, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Jose' Guimaraes
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Pneumology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Patricio Aguiar
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Clinica Universitaria de Medicina I, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Hahn
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Child Neurology, Justus-Liebig University, Giessen, Germany
| | - Olga Azevedo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alice Donati
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Beata Kiec-Wilk
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Unit of Rare Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- The John Paul II Specjalist Hospital in Kraków, Kraków, Poland
| | - Maurizio Scarpa
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Nadine A M E van der Beek
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mireja Del Toro Riera
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic Unit, Department of Pediatric Neurology, Hospital Universitario Vall d'Hebron Barcelona, Barcelona, Spain
| | - Dominique P Germain
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Division of Medical Genetics, University of Versailles, Montigny, France
| | - Hidde Huidekoper
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
2
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
3
|
Chen HA, Hsu RH, Chen LC, Lee NC, Chiu PC, Hwu WL, Chien YH. Twelve-year review of galactosemia newborn screening in Taiwan: Evolving methods and insights. Mol Genet Metab Rep 2024; 38:101048. [PMID: 38469088 PMCID: PMC10926206 DOI: 10.1016/j.ymgmr.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
Background Galactosemia was introduced into Taiwan's routine newborn screening (NBS) program in 1985. This study presents a 12-year experience, emphasizing disease diagnosis and screening performance. Method NBS for galactosemia utilized dried blood spot samples taken 48-72 h post-delivery, with total galactose (TGal) level as the primary marker. Newborns with critical TGal levels were referred immediately, while those with borderline TGal underwent a recall test. GALT activity measurement was applied simultaneously as the second-tier marker. Further confirmatory tests, such as whole exome sequencing (WES), were conducted upon referral. Results From January 1st, 2011, to December 31st, 2022, 51 cases were identified from 817,906 newborns. Of these, nine individuals had persistently elevated TGal. Diagnoses included one case of GALT deficiency, one of GALM deficiency, and seven of GALE deficiencies. Notably, the classic galactosemia patient (GALT deficiency) presented with extreme high TGal and was referred to the hospital for diet management immediately. All affected patients were instructed to adopt a galactose-restricted diet. By the median age of 2.5 years, all exhibited normal development and liver function. Conclusion The incidence of classical galactosemia and its variants is extremely low in Taiwan. Incorporating WES into NBS has improved our ability to detect various galactosemia forms, enriching our understanding of the genetic underpinnings. While these newly discovered forms often present with milder initial elevations in TGal, specific biochemical investigations and regular monitoring are essential to understanding the long-term implications and outcomes.
Collapse
Affiliation(s)
- Hui-An Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Rai-Hseng Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chu Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung City, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Lu WL, Chien YH, Tsai FJ, Hwu WL, Chou YY, Chu SY, Li MJ, Lee AJ, Liao CC, Wang CH, Lee NC. Changing clinical manifestations of Gaucher disease in Taiwan. Orphanet J Rare Dis 2023; 18:293. [PMID: 37715271 PMCID: PMC10502973 DOI: 10.1186/s13023-023-02895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Gaucher disease (GD) is a lysosomal storage disorder characterized by deficient glucocerebrosidase activity that results from biallelic mutations in the GBA1 gene. Its phenotypic variability allows GD to be classified into 3 subtypes based on the presence and extent of neurological manifestations. Enzyme replacement therapy (ERT) has been available for all patients with GD in Taiwan since 1998. Newborn screening (NBS) for GD has been available since 2015. This study attempted to unveil the clinical features of patients diagnosed with GD during different eras in Taiwan. MATERIALS AND METHODS Data from the health records of two tertiary hospitals responsible for two-thirds of the patients with GD in Taiwan were used. The study population included all patients identified as having GD between 1998, and April 2022, in these two hospitals for review. A total of 42 individuals were included, six of whom were diagnosed by NBS. RESULTS Our cohort presented a higher proportion of GD3 individuals, both by clinical suspicion and by NBS diagnosis, than that reported worldwide. The major subtypes that were recognized following NBS diagnosis were GD2 and GD3. The majority of GD patients carry at least one p.Leu483Pro variant. The 5-year survival rates were 0% for GD2 patients and 100% for patients with other subtypes. Patients diagnosed during the post-NBS era were free of symptoms on initial presentation, except for those with the GD2 subtype. For those diagnosed earlier, ERT was shown to be effective in terms of improved hemograms and prevented bone crises. However, the neurological symptoms in GD3 patients progressed despite ERT intervention. CONCLUSION ERT is essential in reversing the hematological presentations and preventing the skeletal complications of GD. Timely diagnosis of GD with NBS allows for early intervention with ERT to prevent disease progression and complications. However, the need for effective intervention for neurological dysfunction remains unmet.
Collapse
Affiliation(s)
- Wen-Li Lu
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Fuu-Jen Tsai
- Division of Medical Genetics, Pediatric Endocrinology and Metabolism, China Medical University Children's Hospital, 2, Yude Road, North District, Taichung City, 40447, Taiwan
- School of Chinese Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Yin Chu
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - An-Ju Lee
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Chao-Chuan Liao
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan
| | - Chung-Hsing Wang
- Division of Medical Genetics, Pediatric Endocrinology and Metabolism, China Medical University Children's Hospital, 2, Yude Road, North District, Taichung City, 40447, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Goldstein JL, McGlaughon J, Kanavy D, Goomber S, Pan Y, Deml B, Donti T, Kearns L, Seifert BA, Schachter M, Son RG, Thaxton C, Udani R, Bali D, Baudet H, Caggana M, Hung C, Kyriakopoulou L, Rosenblum L, Steiner R, Pinto E Vairo F, Wang Y, Watson M, Fernandez R, Weaver M, Clarke L, Rehder C. Variant Classification for Pompe disease; ACMG/AMP specifications from the ClinGen Lysosomal Diseases Variant Curation Expert Panel. Mol Genet Metab 2023; 140:107715. [PMID: 37907381 PMCID: PMC10872922 DOI: 10.1016/j.ymgme.2023.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Jennifer L Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Dona Kanavy
- Duke University Health System, Durham, NC, USA
| | | | | | - Brett Deml
- Prevention Genetics, Marshfield, WI, USA
| | | | - Liz Kearns
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Rachel G Son
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rupa Udani
- Wisconsin State Lab of Hygiene at University of Wisconsin, Madison, WI, USA
| | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Caggana
- Newborn Screening Program, Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | | | | | - Robert Steiner
- Prevention Genetics, Marshfield, WI, USA; Medical College of Wisconsin, Brookfield, WI, USA
| | | | | | - Michael Watson
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Raquel Fernandez
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Meredith Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Tsai MJM, Chen MH, Chien YH, Tung YC. Precocious puberty in patients with Pompe disease. Front Endocrinol (Lausanne) 2023; 14:1150498. [PMID: 37654562 PMCID: PMC10465365 DOI: 10.3389/fendo.2023.1150498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction The life expectancy of Pompe disease patients has increased due to improved neonatal screening and enzyme replacement therapy. Nevertheless, the potential effect of frequent medical device exposure on pubertal development in these patients is not well understood, so further investigation is warranted. Methods In this cross-sectional study, we assessed the growth and puberty of nine Pompe disease patients. In addition, to determine the effects of frequent plastic medical device exposure in these patients, we measured urinary phthalate metabolites before and one day after enzyme replacement therapy. Results Five out of nine patients (55%) with Pompe disease on enzyme replacement therapy had precocious puberty. Patients with precocious puberty had significantly shorter predicted adult heights compared to those with normal puberty (p = 0.014). The levels of mono-2-ethylhexyl phthalate (MEHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) increased after enzyme replacement therapy, but the average levels of phthalate metabolites did not significantly differ between patients with normal and precocious puberty. Conclusion Pompe disease patients on enzyme replacement therapy tend to have precocious puberty, which may reduce their adult height. There are no significant differences in urinary phthalate metabolites between normal and precocious puberty patients. Regular follow-up of growth and puberty in Pompe disease patients is important to improve their health outcomes.
Collapse
Affiliation(s)
- Meng-Ju Melody Tsai
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Mei-Huei Chen
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ching Tung
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Chien YH, Hwu WL. The modern face of newborn screening. Pediatr Neonatol 2023; 64 Suppl 1:S22-S29. [PMID: 36481189 DOI: 10.1016/j.pedneo.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) has been developed for years to identify newborns with severe but treatable conditions. Taiwan's NBS system, after the initial setup for a total coverage of newborns in 1990s, was later optimized to ensure the timely return of results in infants with abnormal results. Advancements in techniques such as Tandem mass spectrometry enable the screening into a multiplex format and increase the conditions to be screened. Furthermore, advances in therapies, such as enzyme replacement therapy, stem cell transplantation, and gene therapy, significantly expand the needs for newborn screening. Advances in genomics and biomarkers discovery improve the test accuracy with the assistance of second-tier tests, and have the potential to be the first-tier test in the future. Therefore, challenge of NBS now is the knowledge gap, including the evidence of the long-term clinical benefits in large cohorts especially in conditions with new therapies, phenotypic variations and the corresponding management of some screened diseases, and cost-effectiveness of extended NBS programs. A short-term and a long-term follow-up program should be implemented to gather those outcomes better especially in the genomic era. Ethical and psychosocial issues are also potentially encountered frequently. Essential education and better informed consent should be considered fundamental to parallel those new tests into future NBS.
Collapse
Affiliation(s)
- Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
8
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
9
|
Schoser B, Laforet P. Therapeutic thoroughfares for adults living with Pompe disease. Curr Opin Neurol 2022; 35:645-650. [PMID: 35942661 DOI: 10.1097/wco.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pompe disease is caused by autosomal recessive mutations in the acid α-glucosidase gene leading to a multiorgan deficiency of the enzyme acid glucosidase alfa. To recover to a nondiseased status, a lift over a threshold of 25% acid glucosidase alfa enzyme activity is required. This update on therapeutic thoroughfares for adult Pompe disease aims to assist neuromuscular and metabolic specialists. RECENT FINDINGS We reviewed the recent studies covering enzyme replacement therapy, gene therapy, and substrate reduction therapy in adult Pompe disease. Results of phase 3 studies and the first sets of long-term data of both novel enzyme replacement therapies, avalglucosidase alfa, and ciplaglucodsidase alfa combined with miglustat, are public. First gene therapy trials are ongoing. Substrate reduction therapy is in early transition to the clinical trial phase. We still miss dose escalation and intensification of frequency trials on enzyme replacement therapy in adults, probably suitable to echo current results in infantile and juvenile Pompe disease. SUMMARY Therapy of Pompe disease reaches new thoroughfares reducing the overall disease burden of patients; however, individualization of these novel therapeutic options remains challenging. Consensus-based and shared decision-based recommendations need to be established based on reliable real-world data to allow the best standards of care worldwide.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinics Ludwig-Maximilians-University, Munich, Germany
| | - Pascal Laforet
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Neurology Department, Raymond-Poincaré Hospital, Garches, and FHU PHENIX, UVSQ Paris-Saclay University, France
| |
Collapse
|
10
|
Lee NC, Chang KL, In 't Groen SLM, de Faria DOS, Huang HJ, Pijnappel WWMP, Hwu WL, Chien YH. Outcome of Later-Onset Pompe Disease Identified Through Newborn Screening. J Pediatr 2022; 244:139-147.e2. [PMID: 34995642 DOI: 10.1016/j.jpeds.2021.12.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To determine the outcomes of patients with later-onset Pompe disease (LOPD) identified through newborn screening (NBS). STUDY DESIGN A prospective observational cohort study was conducted from the initiation of Pompe disease NBS by following subjects every 3-12 months for motor development and biochemical markers. RESULTS Between 2005 and 2018, 39 of 994 975 newborns evaluated were classified as having LOPD based on low acid α-glucosidase (GAA) activity but no cardiac involvement at the time of screening. As of December 2020, 8 of these 39 infants (21%) were treated with enzyme replacement therapy owing to persistent elevation of creatine kinase (CK), cardiac involvement, or developmental delay. All subjects' physical performance and endurance improved after treatment. Subjects carrying c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] presented a phenotype of nonprogressive hypotonia, muscle weakness, and impairment in physical fitness tests, but they have not received treatment. CONCLUSIONS One-fifth of subjects identified through NBS as having LOPD developed symptoms after a follow-up of up to 15 years. NBS was found to facilitate the early detection and early treatment of those subjects. GAA variants c.[752C>T;761C>T] and c.[546+5G>T; 1726G>A] might not cause Pompe disease but still may affect skeletal muscle function.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Ling Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Douglas O S de Faria
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hsiang-Ju Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Senarathne UD, Jasinge E, Viknarajah Mohan S, Waidyanatha S. Non-specificity of symptoms in infantile-onset Pompe disease may delay the diagnosis and institution of treatment. BMJ Case Rep 2022; 15:15/3/e247312. [PMID: 35264382 PMCID: PMC8915381 DOI: 10.1136/bcr-2021-247312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pompe disease is an autosomal-recessive inherited disorder of glycogen metabolism due to lysosomal acid alpha-glucosidase deficiency. The infantile-onset form is rapidly fatal if left untreated and presents with respiratory symptoms, a typical encounter during infancy. We discuss two infants presenting with respiratory symptoms since early infancy and found to have cardiomegaly, hypotonia, elevated muscle enzymes, leading to the diagnosis of Pompe disease with genetic confirmation. However, both infants expired before the enzyme replacement therapy due to complications of irreversible muscle damage despite supportive medical care. Presentation with respiratory symptoms common during childhood, absence of alarming symptoms such as hypoglycaemia, ketoacidosis or encephalopathy, and relative rarity of Pompe disease can contribute to lapses in the early diagnosis as observed in the index patients. Thus, these cases emphasise the importance of vigilant assessment of common paediatric presentations, which may be presenting symptoms of underlying sinister pathologies.
Collapse
Affiliation(s)
- Udara Dilrukshi Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka .,Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Borella, Sri Lanka
| | - Eresha Jasinge
- Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Borella, Sri Lanka
| | | | - Samantha Waidyanatha
- Paediatric Unit, Lady Ridgeway Hospital for Children, Borella, Western, Sri Lanka
| |
Collapse
|
12
|
Kato A, Nakagome I, Kanekiyo U, Lu TT, Li YX, Yoshimura K, Kishida M, Shinzawa K, Yoshida T, Tanaka N, Jia YM, Nash RJ, Fleet GWJ, Yu CY. 5-C-Branched Deoxynojirimycin: Strategy for Designing a 1-Deoxynojirimycin-Based Pharmacological Chaperone with a Nanomolar Affinity for Pompe Disease. J Med Chem 2022; 65:2329-2341. [DOI: 10.1021/acs.jmedchem.1c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Izumi Nakagome
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tomoki Yoshida
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Nobutada Tanaka
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J. Nash
- Institute of Biological, Environmental and Rural Sciences / Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Tocan V, Mushimoto Y, Kojima-Ishii K, Matsuda A, Toda N, Toyomura D, Hirata Y, Sanefuji M, Sawada T, Sakai Y, Nakamura K, Ohga S. The earliest enzyme replacement for infantile-onset Pompe disease in Japan. Pediatr Int 2022; 64:e15286. [PMID: 36074069 DOI: 10.1111/ped.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infantile-onset Pompe disease (IOPD) is the most severe phenotype of a lysosomal storage disorder caused by acid alpha-glucosidase (GAA) deficiency. An enzymatic newborn screening (NBS) program started regionally in Japan in 2013 for early enzyme replacement therapy (ERT). We report the ERT responses of the first NBS-identified Japanese IOPD case and of another case diagnosed prior to NBS, to discuss the problems of promptly starting ERT in Japan. METHODS Acid alpha-glucosidase activity was measured by fluorometric assay in both patients. The diagnosis of IOPD was confirmed by next-generation followed by Sanger-method sequencing (patient 1) or direct sequencing of polymerase chain reaction (PCR)-amplified products (patient 2) of the GAA gene. RESULTS A female infant identified by NBS had a novel out-of-frame (p.F181Dfs*6) variant and a reported pathogenic (p.R600C) variant, along with two pseudodeficiency variants. Enzyme replacement therapy was started at age 58 days when the infant had increased serum levels of creatine kinase and slight myocardial hypertrophy. Clinical and biochemical markers improved promptly. She has been alive and well without delayed development at age 14 months. Patient 2, a Japanese male, received a diagnosis of IOPD at age 5 months before the NBS era. He had a homozygotic variant of GAA (p.R608X), later registered as a cross-reactive immunological material (CRIM)-negative genotype, and developed a high titer of anti-rhGAA antibodies. The patient has survived myocardial hypertrophy with continuous respiratory support for 12 years of ERT. CONCLUSIONS Enzyme replacement therapy should not be delayed over the age of 2 months for reversible cardiac function, although CRIM-negative cases may hamper turnaround time reduction.
Collapse
Affiliation(s)
- Vlad Tocan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Akane Matsuda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Naoko Toda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Daisuke Toyomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Yuichiro Hirata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan.,Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| |
Collapse
|
14
|
Sawada T, Kido J, Sugawara K, Momosaki K, Yoshida S, Kojima-Ishii K, Inoue T, Matsumoto S, Endo F, Ohga S, Hirose S, Nakamura K. Current status of newborn screening for Pompe disease in Japan. Orphanet J Rare Dis 2021; 16:516. [PMID: 34922579 PMCID: PMC8684119 DOI: 10.1186/s13023-021-02146-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
Background Pompe disease is an autosomal recessive inherited metabolic disorder caused by a deficiency of the acid α-glucosidase (GAA). Pompe disease manifests as an accumulation of lysosomal glycogen in the skeletal and heart muscle. We conducted newborn screening (NBS) for Pompe disease in Japan from April 2013 to October 2020 to determine the feasibility and utility of NBS for Pompe disease. Results From the 296,759 newborns whose enzyme activity was measured, 107 of which underwent GAA analysis, we found one patient with infantile-onset Pompe disease (IOPD) and seven with potential late-onset Pompe disease (LOPD). We identified 34 pseudodeficient individuals and 65 carriers or potential carriers. The frequency of patients with IOPD was similar to that in the United States, but significantly lower than that in Taiwan. One patient with IOPD underwent early enzyme replacement therapy within a month after birth before presenting exacerbated manifestations, whereas those with potential LOPD showed no manifestations during the follow-up period of six years. Conclusions The frequency of IOPD in Japan was similar to that in the United States, where NBS for Pompe disease is recommended. This indicates that NBS for Pompe disease may also be useful in Japan. Therefore, it should be used over a wider region in Japan. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02146-z.
Collapse
Affiliation(s)
- Takaaki Sawada
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Keishin Sugawara
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Ken Momosaki
- Kumamoto-Ashikita Medical Center for Disabled Children, Kumamoto, Japan
| | | | - Kanako Kojima-Ishii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Inoue
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Pediatrics, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.,Kumamoto-Ezuko Medical Center for Disabled Children, Kumamoto, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
15
|
Breastmilk as a Multisensory Intervention for Relieving Pain during Newborn Screening Procedures: A Randomized Control Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413023. [PMID: 34948633 PMCID: PMC8701293 DOI: 10.3390/ijerph182413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The study aim was to explore the effects of multisensory breastmilk interventions on short-term pain of infants during newborn screening. This is a randomized controlled trial. A total of 120 newborns were recruited and assigned by randomization to one of three treatment conditions: Condition 1 = routine care (gentle touch + verbal comfort); Condition 2 = breastmilk odor + routine care; or Condition 3 = breastmilk odor + taste + routine care. Pain was scored with the Neonatal Infant Pain Scale (NIPS). Data were collected from video recordings at 1 min intervals over the 11 phases of heel sticks: phase 1, 5 min before heel stick without stimuli (baseline); phase 2 to phase 6 (during heel stick); and phase 7 to phase 11 (recovery). Generalized estimating equations compared differences in pain scores for newborns over phases among the three conditions. Compared with the routine care, provision of the odor and taste of breastmilk reduce NIPS scores during heel sticks (B = −4.36, SE = 0.45, p < 0.001 [phase6]), and during recovery (B = −3.29, SE = 0.42, p < 0.001 [phase7]). Our findings provide new data, which supports the use of multisensory interventions that include breastmilk odor and taste in combination with gentle touch and verbal comfort to relieve pain in infants undergoing newborn screening.
Collapse
|
16
|
Phenotypic implications of pathogenic variant types in Pompe disease. J Hum Genet 2021; 66:1089-1099. [PMID: 33972680 DOI: 10.1038/s10038-021-00935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Newborn screening and therapies for Pompe disease (glycogen storage disease type II, acid maltase deficiency) will continue to expand in the future. It is thus important to determine whether enzyme activity or type of pathogenic genetic variant in GAA can best predict phenotypic severity, particularly the presence of infantile-onset Pompe disease (IOPD) versus late-onset Pompe disease (LOPD). We performed a retrospective analysis of 23 participants with genetically-confirmed cases of Pompe disease. The following data were collected: clinical details including presence or absence of cardiomyopathy, enzyme activity levels, and features of GAA variants including exon versus intron location and splice site versus non-splice site. Several combinations of GAA variant types for individual participants had significant associations with disease subtype, cardiomyopathy, age at diagnosis, gross motor function scale (GMFS), and stability of body weight. The presence of at least one splice site variant (c.546 G > C/p.T182 = , c.1076-22 T > G, c.2646 + 2 T > A, and the classic c.-32-13T > G variant) was associated with LOPD, while the presence of non-splice site variants on both alleles was associated with IOPD. Enzyme activity levels in isolation were not sufficient to predict disease subtype or other major clinical features. To extend the findings of prior studies, we found that multiple types of splice site variants beyond the classic c.-32-13T > G variant are often associated with a milder phenotype. Enzyme activity levels continue to have utility for supporting the diagnosis when the genetic variants are ambiguous. It is important for newly diagnosed patients with Pompe disease to have complete genetic, cardiac, and neurological evaluations.
Collapse
|
17
|
Chen S, Wang J, Zhu J, Chung RYN, Dong D. Quality of life and its contributors among adults with late-onset Pompe disease in China. Orphanet J Rare Dis 2021; 16:199. [PMID: 33933104 PMCID: PMC8088713 DOI: 10.1186/s13023-021-01836-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Pompe disease (PD) is a rare inherited disorder caused by the deficiency of acid-α glucosidase, which leads to the impairment of organ and tissue functions and causes disabilities. As the first national survey on patients with late-onset PD (LOPD) in China, this study investigated the quality of life (QOL) of adult patients with LOPD in China and explored its contributors. Methods Data were derived from a nation-based, cross-sectional, self-response survey on rare diseases (RDs) in early 2018. Answers from 68 adult Chinese patients with LOPD were used for data analysis. QOL was measured using the World Health Organization Quality of Life: Brief Version. Covariates included age, gender, education, employment, reliance on assistive devices, medication history, social support, and disease economic burden. Data were analyzed using linear regression in R. Results For adult patients with LOPD, the average scores and standard deviations (SD) of the four dimensions of QOL were physical health = 33.77 (SD = 18.28), psychological health = 43.81 (SD = 21.70), environmental health = 39.43 (SD = 16.93), and social relationship = 46.20 (SD = 19.76); the scoring for each dimension was evaluated on a scale of 0 to 100. At the significance level of p < 0.05, with increasing age, the patients experienced a significant decrease in physical health QOL (β = − 0.75) and environmental health QOL (β = − 0.79). Those who relied heavily on assistive devices had lower perceived physical health (β = − 17.8), psychological health (β = − 22.76), environmental health (β = − 17.8), and social relationships (β = − 22.12) than those who did not. A one-unit increase in the amount of social support, as a form of social interaction, led to a significant increase in physical health (β = 0.28), psychological health (β = 0.71), environmental health (β = 0.72), and social relationships (β = 0.70). Conclusion Adult Chinese patients with LOPD had a lower physical health and QOL compared to their counterparts with other RDs. Being employed was found to affect the QOL of adult Chinese patients with LOPD in almost all dimensions. Encouraging adult Chinese patients with LOPD to be socially active and help them become more involved in social life might improve their QOL.
Collapse
Affiliation(s)
- Shanquan Chen
- The School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jingxuan Wang
- JC School of Public Health and Primary Care, Faculty of Medicine, 4/F School of Public Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianfeng Zhu
- School of Social Development and Public Policy, Fudan University, Shanghai, China
| | - Roger Yat-Nork Chung
- JC School of Public Health and Primary Care, Faculty of Medicine, 4/F School of Public Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,CUHK Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dong Dong
- JC School of Public Health and Primary Care, Faculty of Medicine, 4/F School of Public Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Dangouloff T, Vrščaj E, Servais L, Osredkar D. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go. Neuromuscul Disord 2021; 31:574-582. [PMID: 33985857 DOI: 10.1016/j.nmd.2021.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
Spinal muscular atrophy (SMA) is a rare and devastating disease. New disease-modifying treatments have recently been approved and early treatment has been related to a better outcome. In this context, several newborn screening (NBS) programs have been implemented. The aim of the study was to obtain a global overview on the current situation and perspectives on SMA NBS. We conducted a survey and contacted experts from 152 countries, from which we gathered 87 responses. We identified 9 SMA NBS programs that have so far detected 288 newborns with SMA out of 3,674,277 newborns screened. Funding, screening methods, organisation, and consent process were variable between SMA NBS programs. Many respondents pointed the lack of cost/benefit data as a major obstacle to SMA NBS implementation. In the next four years, our data suggest a 24% coverage of newborns from countries where a disease-modifying drug is available and 8,5% coverage in countries with no diseases-modifying drugs. The annual proportion of newborns to be screened in the coming years is expected to increase steadily. The experts expressed a strong need for the implementation of SMA NBS as means to improve care for patients with SMA.
Collapse
Affiliation(s)
- Tamara Dangouloff
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, CRMN Liège, CHR de la Citadelle, Boulevard du 12ème de Ligne, 4000 Liège, Belgium
| | - Eva Vrščaj
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, 1525 Ljubljana, Slovenia
| | - Laurent Servais
- Division of Child Neurology, Reference Center for Neuromuscular Diseases, Department of Pediatrics, University Hospital Liège & University of Liège, CRMN Liège, CHR de la Citadelle, Boulevard du 12ème de Ligne, 4000 Liège, Belgium; MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, United Kingdom.
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, 1525 Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
19
|
de Faria DOS, 't Groen SLMI, Hoogeveen-Westerveld M, Nino MY, van der Ploeg AT, Bergsma AJ, Pijnappel WWMP. Update of the Pompe variant database for the prediction of clinical phenotypes: Novel disease-associated variants, common sequence variants, and results from newborn screening. Hum Mutat 2020; 42:119-134. [PMID: 33560568 PMCID: PMC7898817 DOI: 10.1002/humu.24148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Douglas O S de Faria
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Monica Y Nino
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Atze J Bergsma
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
At-Risk Testing for Pompe Disease Using Dried Blood Spots: Lessons Learned for Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6040096. [PMID: 33371305 PMCID: PMC7780922 DOI: 10.3390/ijns6040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Pompe disease (GSD II) is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme acid-α-glucosidase (GAA, EC 3.2.1.20), leading to generalized accumulation of lysosomal glycogen especially in the heart, skeletal, and smooth muscle, and the nervous system. It is generally classified based on the age of onset as infantile (IOPD) presenting during the first year of life, and late onset (LOPD) when it presents afterwards. In our study, a cohort of 13,627 samples were tested between January 2017 and December 2018 for acid-α-glucosidase (GAA, EC 3.2.1.20) deficiency either by fluorometry or tandem mass spectrometry (MS). Testing was performed for patients who displayed conditions of unknown etiology, e.g., CK elevations or cardiomyopathy, in the case of infantile patients. On average 8% of samples showed activity below the reference range and were further assessed by another enzyme activity measurement or molecular genetic analysis. Pre-analytical conditions, like proper drying, greatly affect enzyme activity, and should be assessed with measurement of reference enzyme(s). In conclusion, at-risk testing can provide a good first step for the future introduction of newborn screening for Pompe disease. It yields immediate benefits for the patients regarding the availability and timeliness of the diagnosis. In addition, the laboratory can introduce the required methodology and gain insights in the evaluation of results in a lower throughput environment. Finally, awareness of such a rare condition is increased tremendously among local physicians which can aid in the introduction newborn screening.
Collapse
|
21
|
Newborn Screening for Pompe Disease: Pennsylvania Experience. Int J Neonatal Screen 2020; 6:ijns6040089. [PMID: 33202836 PMCID: PMC7712483 DOI: 10.3390/ijns6040089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pennsylvania started newborn screening for Pompe disease in February 2016. Between February 2016 and December 2019, 531,139 newborns were screened. Alpha-Glucosidase (GAA) enzyme activity is measured by flow-injection tandem mass spectrometry (FIA/MS/MS) and full sequencing of the GAA gene is performed as a second-tier test in all newborns with low GAA enzyme activity [<2.10 micromole/L/h]. A total of 115 newborns had low GAA enzyme activity and abnormal genetic testing and were referred to metabolic centers. Two newborns were diagnosed with Infantile Onset Pompe Disease (IOPD), and 31 newborns were confirmed to have Late Onset Pompe Disease (LOPD). The incidence of IOPD + LOPD was 1:16,095. A total of 30 patients were compound heterozygous for one pathogenic and one variant of unknown significance (VUS) mutation or two VUS mutations and were defined as suspected LOPD. The incidence of IOPD + LOPD + suspected LOPD was 1: 8431 in PA. We also found 35 carriers, 15 pseudodeficiency carriers, and 2 false positive newborns.
Collapse
|
22
|
The Timely Needs for Infantile Onset Pompe Disease Newborn Screening-Practice in Taiwan. Int J Neonatal Screen 2020; 6:30. [PMID: 33073026 PMCID: PMC7422994 DOI: 10.3390/ijns6020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Pompe disease Newborn screening (NBS) aims at diagnosing patients with infantile-onset Pompe disease (IOPD) early enough so a timely treatment can be instituted. Since 2015, the National Taiwan University NBS Center has changed the method for Pompe disease NBS from fluorometric assay to tandem mass assay. From 2016 to 2019, 14 newborns were reported as high-risk for Pompe disease at a median age of 9 days (range 6-13), and 18 were with a borderline risk at a median age of 13 days (9-28). None of the borderline risks were IOPD patients. Among the 14 at a high-risk of Pompe disease, four were found to have cardiomyopathy, and six were classified as potential late-onset Pompe disease. The four classic IOPD newborns, three of the four having at least one allele of the cross-reactive immunologic material (CRIM)-positive variant, started enzyme replacement therapy (ERT) at a median age of 9 days (8-14). Western Blot analysis and whole gene sequencing confirmed the CRIM-positive status in all cases. Here, we focus on the patient without the known CRIM-positive variant. Doing ERT before knowing the CRIM status created a dilemma in the decision and was discussed in detail. Our Pompe disease screening and diagnostic program successfully detected and treated patients with IOPD in time. However, the timely exclusion of a CRIM-negative status, which is rare in the Chinese population, is still a challenging task.
Collapse
|
23
|
Smith LD, Bainbridge MN, Parad RB, Bhattacharjee A. Second Tier Molecular Genetic Testing in Newborn Screening for Pompe Disease: Landscape and Challenges. Int J Neonatal Screen 2020; 6:32. [PMID: 32352041 PMCID: PMC7189780 DOI: 10.3390/ijns6020032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Pompe disease (PD) is screened by a two tier newborn screening (NBS) algorithm, the first tier of which is an enzymatic assay performed on newborn dried blood spots (DBS). As first tier enzymatic screening tests have false positive results, an immediate second tier test on the same sample is critical in resolving newborn health status. Two methodologies have been proposed for second tier testing: (a) measurement of enzymatic activities such as of Creatine/Creatinine over alpha-glucosidase ratio, and (b) DNA sequencing (a molecular genetics approach), such as targeted next generation sequencing. (tNGS). In this review, we discuss the tNGS approach, as well as the challenges in providing second tier screening and follow-up care. While tNGS can predict genotype-phenotype effects when known, these advantages may be diminished when the variants are novel, of unknown significance or not discoverable by current test methodologies. Due to the fact that criticisms of screening algorithms that utilize tNGS are based on perceived complexities, including variant detection and interpretation, we clarify the actual limitations and present the rationale that supports optimizing a molecular genetic testing approach with tNGS. Second tier tNGS can benefit clinical decision-making through the use of the initial NBS DBS punch and rapid turn-around time methodology for tNGS, that includes copy number variant analysis, variant effect prediction, and variant 'cut-off' tools for the reduction of false positive results. The availability of DNA sequence data will contribute to the improved understanding of genotype-phenotype associations and application of treatment. The ultimate goal of second tier testing should enable the earliest possible diagnosis for the earliest initiation of the most effective clinical interventions in infants with PD.
Collapse
Affiliation(s)
- Laurie D. Smith
- Department of Pediatrics, UNC Hospitals, Chapel Hill, NC 27599, USA;
- Laboratory Services Division, Baebies, Inc., Durham, NC 27709, USA
| | - Matthew N. Bainbridge
- Codified Genomics, Houston, TX 77004, USA;
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
| | - Richard B. Parad
- Department of Pediatric Newborn Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Saich R, Brown R, Collicoat M, Jenner C, Primmer J, Clancy B, Holland T, Krinks S. Is Newborn Screening the Ultimate Strategy to Reduce Diagnostic Delays in Pompe Disease? The Parent and Patient Perspective. Int J Neonatal Screen 2020; 6:1. [PMID: 33073001 PMCID: PMC7422966 DOI: 10.3390/ijns6010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Pompe disease (PD) is a rare, autosomal-recessively inherited deficiency in the enzyme acid α-glucosidase. It is a spectrum disorder; age at symptom onset and rate of deterioration can vary considerably. In affected infants prognosis is poor, such that without treatment most infants die within the first year of life. To lose a baby in their first year of life to a rare disease causes much regret, guilt, and loneliness to parents, family, and friends. To lose a baby needlessly when there is an effective treatment amplifies this sadness. With so little experience of rare disease in the community, once a baby transfers to their home they are subject to a very uncertain and unyielding diagnostic journey while their symptomology progresses and their health deteriorates. With a rare disease like PD, the best opportunity to diagnose a baby is at birth. PD is not yet included in the current newborn screening (NBS) panel in Australia. Should it be? In late 2018 the Australian Pompe Association applied to the Australian Standing committee on Newborn Screening to have PD included. The application was not upheld. Here we provide an overview of the rationale for NBS, drawing on the scientific literature and perspectives from The Australian Pompe Association, its patients and their families. In doing so, we hope to bring a new voice to this very important debate.
Collapse
Affiliation(s)
- Raymond Saich
- Australian Pompe Association Inc., Kellyville, NSW 2155, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|