1
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2024:10.1007/s12035-024-04398-9. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
2
|
Wu M, Yang P, Wang J, Yang R, Chen Y, Liu K, Yuan Y, Zhang L. Characterization of the Components and Metabolites of Achyranthes Bidentata in the Plasma and Brain Tissue of Rats Based on Ultrahigh Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HR-MS). Molecules 2024; 29:2840. [PMID: 38930905 PMCID: PMC11206857 DOI: 10.3390/molecules29122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Achyranthes bidentata (AR) is a traditional Chinese herb used for the treatment of hypertension and cerebral ischemia, but its pharmacological effects are not known. AIM OF STUDY We aimed to detect and accurately identify the components and metabolites of AR in the plasma and brain tissue of Sprague Dawley rats. METHODS We employed ultrahigh performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HR-MS) to detect AR components in the plasma and brain tissue of rats. The absorption and metabolites in the plasma and brain tissue of normal control rats and rats that underwent middle cerebral artery occlusion (MCAO) were characterized and compared. RESULTS A total of 281 compounds, including alkaloids, flavonoids, terpenoids, phenylpropanes, sugars and glycosides, steroids, triterpenes, amino acids, and peptides, was identified in samples of Achyranthes bidentata (TCM-AR). Four types of absorbable prototype components and 48 kinds of metabolites were identified in rats in the normal control plasma group which were given AR (AR plasma group), and five kinds of metabolites were identified in rats of the normal control brain tissue group which were given AR (AR brain group). Three absorbed prototype components and 13 metabolites were identified in the plasma of rats which underwent MCAO and were given AR (MCAO + AR plasma group). Six absorbed prototype components and two metabolites were identified in the brain tissue of rats who underwent MCAO and were administered AR (MCAO + AR brain group). These results showed that, after the oral administration of AR, the number of identified components in plasma was more than that in brain tissue. The number of prototype components in the AR plasma group was higher than that in the MCAO + AR plasma group, which may indicate that metabolite absorption in rats undergoing MCAO was worse. The number of prototype components in the MCAO + AR brain group was higher than that in the AR brain group, indicating that the blood-brain barrier was destroyed after MCAO, resulting in more compounds entering brain tissue. CONCLUSIONS UHPLC-HR-MS was used to rapidly analyze the components and metabolites of AR in the blood and brain of rats under normal and pathologic conditions, and to comprehensively characterize the components of TCM-AR. We also analyzed and compared the absorbable components and metabolites of normal rats under cerebral ischemia-reperfusion injury to explore the potential mechanism of action. This method could be applied to various Chinese herbs and disease models, which could promote TCM modernization.
Collapse
Affiliation(s)
- Mengting Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.); (R.Y.); (Y.C.); (K.L.)
| | - Peilin Yang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.Y.); (J.W.)
| | - Jianying Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.Y.); (J.W.)
| | - Ruoyan Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.); (R.Y.); (Y.C.); (K.L.)
| | - Yingyuan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.); (R.Y.); (Y.C.); (K.L.)
| | - Kun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.); (R.Y.); (Y.C.); (K.L.)
| | - Ying Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.); (R.Y.); (Y.C.); (K.L.)
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.Y.); (J.W.)
| |
Collapse
|
3
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
4
|
Hao L, Yang Y, Xu X, Guo X, Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front Neurol 2023; 13:1073958. [PMID: 36742051 PMCID: PMC9889551 DOI: 10.3389/fneur.2022.1073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Ischemic stroke accounts for 70-80% of all stroke cases. Immunity plays an important role in the pathophysiology of ischemic stroke. Microglia are the first line of defense in the central nervous system. Microglial functions are largely dependent on their pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotype. Modulating neuroinflammation via targeting microglia polarization toward anti-inflammatory phenotype might be a novel treatment for ischemic stroke. Mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (MSC-EVs) have been demonstrated to modulate microglia activation and phenotype polarization. In this review, we summarize the physiological characteristics and functions of microglia in the healthy brain, the activation and polarization of microglia in stroke brain, the effects of MSC/MSC-EVs on the activation of MSC in vitro and in vivo, and possible underlying mechanisms, providing evidence for a possible novel therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Hao
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Xu
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Xiuming Guo ✉
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China,Qunling Zhan ✉
| |
Collapse
|
5
|
Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:900-922. [PMID: 36159596 PMCID: PMC9464648 DOI: 10.1016/j.omtn.2022.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Li F, Kang X, Xin W, Li X. The Emerging Role of Extracellular Vesicle Derived From Neurons/Neurogliocytes in Central Nervous System Diseases: Novel Insights Into Ischemic Stroke. Front Pharmacol 2022; 13:890698. [PMID: 35559228 PMCID: PMC9086165 DOI: 10.3389/fphar.2022.890698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
Neurons and neurogliocytes (oligodendrocytes, astrocytes, and microglia) are essential for maintaining homeostasis of the microenvironment in the central nervous system (CNS). These cells have been shown to support cell-cell communication via multiple mechanisms, most recently by the release of extracellular vesicles (EVs). Since EVs carry a variety of cargoes of nucleic acids, lipids, and proteins and mediate intercellular communication, they have been the hotspot of diagnosis and treatment. The mechanisms underlying CNS disorders include angiogenesis, autophagy, apoptosis, cell death, and inflammation, and cell-EVs have been revealed to be involved in these pathological processes. Ischemic stroke is one of the most common causes of death and disability worldwide. It results in serious neurological and physical dysfunction and even leads to heavy economic and social burdens. Although a large number of researchers have reported that EVs derived from these cells play a vital role in regulating multiple pathological mechanisms in ischemic stroke, the specific interactional relationships and mechanisms between specific cell-EVs and stroke treatment have not been clearly described. This review aims to summarize the therapeutic effects and mechanisms of action of specific cell-EVs on ischemia. Additionally, this study emphasizes that these EVs are involved in stroke treatment by inhibiting and activating various signaling pathways such as ncRNAs, TGF-β1, and NF-κB.
Collapse
Affiliation(s)
- Fan Li
- Department of Neurosurgery, Heji Hospital Affiliated Changzhi Medical College, Shanxi, China
| | - Xiaokui Kang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
7
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Wang HN, Sun SS, Liu MZ, Yan MC, Liu YF, Zhu Z, Zhang Z. Natural bioactive compounds from marine fungi (2017-2020). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:203-230. [PMID: 34253101 DOI: 10.1080/10286020.2021.1947254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Secondary metabolites generated by marine fungi have relatively small molecular weights and excellent activities and have become an important source for developing drug lead compounds. The review summarizes the structures of novel small-molecule compounds derived from marine fungi in recent years; introduces representative monomers in antimicrobial, antitumor, anti-viral, and anti-neuritis aspects; and discusses their biological activities and molecular mechanisms. This review will act as a guide for further discovering marine-derived drugs with novel chemical structures and specific targeting mechanisms.
Collapse
Affiliation(s)
- Huan-Nan Wang
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Shan-Shan Sun
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Meng-Zhen Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Mao-Cai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Yu-Feng Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Zheng Zhu
- College of Material Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| |
Collapse
|
9
|
Wang Y, Ge X, Yu S, Cheng Q. Achyranthes bidentata polypeptide alleviates neurotoxicity of lipopolysaccharide-activated microglia via PI3K/Akt dependent NOX2/ROS pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1522. [PMID: 34790728 PMCID: PMC8576683 DOI: 10.21037/atm-21-4027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 01/02/2023]
Abstract
Background Achyranthes bidentata polypeptide fraction k (ABPPk) has been shown to protect ischemic stroke and Parkinson’s disease, and can inhibit neuroinflammation in lipopolysaccharide (LPS)-activated BV2 microglia. However, the effect of ABPPk responsible for alleviating microglial neurotoxicity remains unknown. Methods Primary microglia were cultured to investigate the effect of ABPPk on LPS-induced neuroinflammation. Microglia conditioned medium (MCM) was collected to stimulate primary cortical neurons and then the neuronal viability, lactate dehydrogenase (LDH) release, intracellular calcium influx, mitochondria membrane potential (MMP) were assessed, respectively. Postnatal day 5 Sprague-Dawley rat pups were intracerebral injected with LPS to establish an LPS-induced brain injury model. Double immunohistochemical staining for NeuN and Iba1 was performed to evaluate the effects of ABPPk on LPS-induced neuronal damage and microglial activation. TUNEL assay was conducted to detect cell apoptosis in LPS-injected brain. The effect of ABPPk on LPS-induced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production as well as the phosphorylation of protein kinase B (Akt) was detected. Moreover, LY294002 (a specific PI3K inhibitor) and SC79 (a specific Akt activator) were used to further reveal the underlying mechanism. Results ABPPk pretreatment inhibited LPS-induced NLRP3 and cleaved caspase 1 expressions as well as the mRNA levels of IL-1β and IL-18. Moreover, ABPPk inhibited glutamate release from LPS-activated microglia in a concentration-dependent manner. MCM stimulation resulted in characteristic neuronal toxicity including neuronal viability decrease, LDH release increase, calcium overload, and MMP drop. However, ABPPk pretreatment on microglia reduced the neurotoxicity of MCM. LPS intracerebral injection led to neuronal damage, microglial activation and cell apoptosis in the brain, while ABPPk preadministration significantly inhibited LPS-induced microglial activation and alleviated the brain injury. ABPPk pretreatment inhibited NOX2 expression and ROS production in LPS-activated primary microglia. Signaling pathway analysis showed that ABPPk promoted the phosphorylation of Akt in microglia and inhibited LPS-upregulated NOX2 expression, ROS production, and glutamate release, which can be eliminated by pharmacological inhibition of PI3K. Specific Akt activator could inhibit LPS-induced NOX2 expression, ROS production and glutamate release. Conclusions The present results suggested that ABPPk could alleviate neurotoxicity of LPS-activated microglia via PI3K/Akt dependent NOX2/ROS pathway.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiangyu Ge
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
11
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Ge X, Wang Y, Yu S, Cao X, Chen Y, Cheng Q, Ding F. Anti-inflammatory Activity of a Polypeptide Fraction From Achyranthes bidentate in Amyloid β Oligomers Induced Model of Alzheimer's Disease. Front Pharmacol 2021; 12:716177. [PMID: 34456729 PMCID: PMC8397449 DOI: 10.3389/fphar.2021.716177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Neuroinflammation plays a crucial role in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), and anti-inflammation has been considered as a potential therapeutic strategy. Achyranthes bidentate polypeptide fraction k (ABPPk) was shown to protect neurons from death and suppress microglia and astrocyte activation in PD model mice. However, how ABPPk regulates neuroinflammation to exert a neuroprotective role remains unclear. Toxic Aβ oligomers (AβOs) can trigger inflammatory response and play an important role in the pathogenesis of AD. In the present study, for the first time, we investigated the effects and underlying mechanisms of ABPPk on neuroinflammation in AβOs-induced models of AD. In vitro, ABPPk pretreatment dose-dependently inhibited AβOs-induced pro-inflammatory cytokines mRNA levels in BV2 and primary microglia. ABPPk pretreatment also reduced the neurotoxicity of BV2 microglia-conditioned media on primary hippocampal neurons. Furthermore, ABPPk down-regulated the AβOs-induced phosphorylation of IκBα and NF-κB p65 as well as the expression of NLRP3 in BV2 microglia. In vivo, ABPPk pre-administration significantly improved locomotor activity, alleviated memory deficits, and rescued neuronal degeneration and loss in the hippocampus of AβOs-injected mice. ABPPk inhibited the activation of microglia in hippocampal CA3 region and suppressed the activation of NF-κB as well as the expression of NLRP3, cleaved caspase-1, and ASC in the brain after AβOs injection. ABPPk hindered the release of pro-inflammatory cytokines and promoted the release of anti-inflammatory cytokines in the brain. Notably, the polarization experiment on BV2 microglia demonstrated that ABPPk inhibited M1-phenotype polarization and promoted M2-phenotype polarization by activating the LPS- or AβOs-impaired autophagy in microglia. Taken together, our observations indicate that ABPPk can restore the autophagy of microglia damaged by AβOs, thereby promoting M2-phenotype polarization and inhibiting M1-phenotype polarization, thus playing a role in regulating neuroinflammation and alleviating neurotoxicity.
Collapse
Affiliation(s)
- Xiangyu Ge
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yicong Chen
- School of Medicine, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| |
Collapse
|
13
|
Xin WQ, Wei W, Pan YL, Cui BL, Yang XY, Bähr M, Doeppner TR. Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells 2021; 13:1030-1048. [PMID: 34567423 PMCID: PMC8422926 DOI: 10.4252/wjsc.v13.i8.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.
Collapse
Affiliation(s)
- Wen-Qiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Yong-Li Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao-Long Cui
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| |
Collapse
|
14
|
Chen H, Dong B, Shi Y, Yu Y, Xie K. Hydrogen Alleviates Neuronal Injury and Neuroinflammation Induced by Microglial Activation via the Nuclear Factor Erythroid 2-related Factor 2 Pathway in Sepsis-associated Encephalopathy. Neuroscience 2021; 466:87-100. [PMID: 33992722 DOI: 10.1016/j.neuroscience.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral and central nervous system (CNS) dysfunction. Microglia play a vital role in protecting the brain from neuronal damage, which is closely related to inflammatory responses. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has an impact on microglial and neuronal injury. Here, we mainly explored the molecular mechanism by which Hydrogen (H2) regulates neuroinflammation in SAE and the role of Nrf2 in this process. An in vivo model of SAE was generated by cecal ligation and puncture (CLP). Primary microglia and neurons were cultured to establish an in vitro model. Microglia, neurons and brain tissue were obtained to detect Nrf2 expression, inflammation, cell injury, apoptosis, and microglial polarization. Escape latency, the number of platform crossings and the time spent in the target quadrant were measured to assess cognitive function. H2 attenuated microglial polarization from the M1 to the M2 phenotype, cytokine release and TLR/NF-κb activation and protected neurons from lipopolysaccharide (LPS)-activated microglia-induced injury via the Nrf2 pathway. SAE activated Nrf2 expression, and H2 further improved Nrf2 expression in SAE mice. H2 alleviated microglial polarization from the M1 to the M2 phenotype and cytokine release in the cerebral cortex and improved neuronal injury or cognitive dysfunction in SAE mice and wild-type mice but not in Nrf2-/- mice. H2 exerts antineuroinflammatory effects associated with TLR4/NF-κB signaling activation and neuroprotective effects by inhibiting the excessive release of proinflammatory cytokines, neuronal loss and apoptosis in vitro and in vivo through the Nrf2 pathway.
Collapse
Affiliation(s)
- Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
15
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Nie
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin-Jian Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Cheng Qiu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Long Ma
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xin Dong
- 3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wen-Jun Tu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China.,5Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,6Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
16
|
Lei X, Li H, Li M, Dong Q, Zhao H, Zhang Z, Sun B, Mao L. The novel Nrf2 activator CDDO-EA attenuates cerebral ischemic injury by promoting microglia/macrophage polarization toward M2 phenotype in mice. CNS Neurosci Ther 2020; 27:82-91. [PMID: 33280237 PMCID: PMC7804925 DOI: 10.1111/cns.13496] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of present study was to explore whether 2‐cyano‐3, 12‐dioxooleana‐1, 9‐dien‐28‐oic acid (CDDO)‐ethylamide (CDDO‐EA) attenuates cerebral ischemic injury and its possible mechanisms using a middle cerebral artery occlusion (MCAO) model in C57BL/6 mice. Our results showed that intraperitoneal injection (i.p.) of CDDO‐EA (2 and 4 mg/kg) augmented NFE2‐related factor 2 (Nrf2) and heme oxygenase‐1 (HO‐1) expression in ischemic cortex after MCAO. Moreover, CDDO‐EA (2 mg/kg, i.p.) significantly enhanced Nrf2 nuclear accumulation, associated with increased cytosolic HO‐1 expression, reduced neurological deficit and infarct volume as well as neural apoptosis, and shifted polarization of microglia/macrophages toward an antiinflammatory M2 phenotype in ischemic cortex after MCAO. Using an in vitro model, we confirmed that CDDO‐EA (100 μg/mL) increased HO‐1 expression and primed microglial polarization toward M2 phenotype under inflammatory stimulation in BV2 microglial cells. These findings suggest that a novel Nrf2 activator CDDO‐EA confers neuroprotection against ischemic injury.
Collapse
Affiliation(s)
- Xia Lei
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Department of Neurology, Cangzhou People's Hospital, Cangzhou, China
| | - Hanxia Li
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Min Li
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qiwei Dong
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Huayang Zhao
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zongyong Zhang
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Baoliang Sun
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Leilei Mao
- Department of Neurology, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
17
|
Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int J Mol Sci 2020; 21:ijms21144875. [PMID: 32664226 PMCID: PMC7402299 DOI: 10.3390/ijms21144875] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus and induces the transcription of enzymes involved in counteracting oxidative stress, endobiotic and xenobiotic metabolism, regulators of inflammation, and others. Different natural compounds, including food and plant-derived components, were shown to be able to activate Nrf2, mediating an antioxidant response. Some of these compounds were tested in stroke experimental models showing several beneficial actions. In this review, we focused on the studies that evidenced the positive effects of natural bioactive compounds in stroke experimental models through the activation of Nrf2 pathway. Interestingly, different natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response associated with the beneficial effects against stroke. According to several studies, the combination of different bioactive compounds can lead to a better neuroprotection. In conclusion, natural bioactive compounds may represent new therapeutic strategies against stroke.
Collapse
|