1
|
Ballester J, Marchand WR, Philip NS. Transcranial magnetic stimulation for methamphetamine use disorder: A scoping review within the neurocircuitry model of addiction. Psychiatry Res 2024; 338:115995. [PMID: 38852478 PMCID: PMC11209858 DOI: 10.1016/j.psychres.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The use of methamphetamine in the United States is increasing, contributing now to the "fourth wave" in the national opioid epidemic crisis. People who suffer from methamphetamine use disorder (MUD) have a higher risk of death. No pharmacological interventions are approved by the FDA and psychosocial interventions are only moderately effective. Transcranial Magnetic Stimulation (TMS) is a relatively novel FDA-cleared intervention for the treatment of Major Depressive Disorder (MDD) and other neuropsychiatric conditions. Several lines of research suggest that TMS could be useful for the treatment of addictive disorders, including MUD. We will review those published clinical trials that show potential effects on craving reduction of TMS when applied over the dorsolateral prefrontal cortex (DLPFC) also highlighting some limitations that affect their generalizability and applicability. We propose the use of the Koob and Volkow's neurocircuitry model of addiction as a frame to explain the brain effects of TMS in patients with MUD. We will finally discuss new venues that could lead to a more individualized and effective treatment of this complex disorder including the use of neuroimaging, the exploration of different areas of the brain such as the frontopolar cortex or the salience network and the use of biomarkers.
Collapse
Affiliation(s)
- J Ballester
- Substance Abuse Residential Rehabilitation Treatment Program, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA.
| | - W R Marchand
- Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; VISN-19 Whole Health Flagship Site, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - N S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| |
Collapse
|
2
|
Jiao L, Chen T, Huang Y, Huang X. Effect analysis of repeated transcranial magnetic stimulation combined with fluoxetine in the treatment of first-episode adolescent depression. Front Psychiatry 2024; 15:1397706. [PMID: 38938464 PMCID: PMC11210588 DOI: 10.3389/fpsyt.2024.1397706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objectives This study aims to evaluate the efficacy of repeated transcranial magnetic stimulation (rTMS) combined with fluoxetine in enhancing the early antidepressant response in first-episode adolescent depression cases, providing insights for patient diagnosis and treatment. Methods One hundred and thirty-five adolescents experiencing their first depressive episode were randomly assigned to either a sham group treated with fluoxetine or to low or high repetitive transcranial magnetic stimulation (rTMS) groups receiving both rTMS and fluoxetine. Therapeutic effects were assessed by comparing changes in Hamilton Depression Scale (HAMD-17) scores, cognitive function scores from the Wisconsin Card Sorting Test (WCST), and Clinical Global Impression-improvement (CGI-I) scores, along with recording adverse reactions. Results The total effectiveness rate in the rTMS groups (Low, 95.56%; High, 97.78%) was significantly higher than in the Sham rTMS group (80%) (F = 11.15, P<0.0001). Post-treatment, not only the Low but also the High rTMS group exhibited more significant reductions in HAMD-17 (Low, 21.05; High, 21.45) and CGI-I scores (Low, 3.44; High, 3.60) compared to the Sham rTMS group (HAMD-17, 16.05; CGI-I, 2.57) (two weeks: F = 7.889, P = 0.0006; four weeks: F = 15.900, P<0.0001). Additionally, the two rTMS groups exhibited fewer erroneous responses and persistent errors in the WCST and completed more WCST categorizations than the Sham rTMS group. There was no significant difference in adverse reaction rates between the groups (F=4.421, P=0.0794). Conclusions The combination of fluoxetine with rTMS demonstrates enhanced therapeutic effectiveness in treating adolescent depression, effectively controlling disease progression, reducing depressive symptoms, and improving cognitive function, making it a valuable clinical approach.
Collapse
Affiliation(s)
- Long Jiao
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Heifei, China
- Department of Child Psychology, Anhui Provincial Children’s Hospital, Heifei, China
| | - Tingting Chen
- Laboratory of Medical Test, Hefei Technology College, Heifei, China
| | - Yuanyuan Huang
- Department of Child Psychology, Anhui Provincial Children’s Hospital, Heifei, China
| | - Xiaoqin Huang
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Heifei, China
| |
Collapse
|
3
|
Zhang M, Chen L, Ren Z, Wang Z, Luo W. Applications of TMS in individuals with methamphetamine use disorder: A review. Heliyon 2024; 10:e25565. [PMID: 38420394 PMCID: PMC10900420 DOI: 10.1016/j.heliyon.2024.e25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Methamphetamine abuse results in a host of social and medical issues. Methamphetamine use disorder (MUD) can hinder the brain and impair cognitive functions and mental health. Transcranial magnetic stimulation (TMS) is a non-invasive approach in the treatment of MUD. Recent studies have demonstrated encouraging and positive effects of TMS on the craving, affective symptoms, sleep quality, and cognitive functions in individuals with MUD. The regulation of specific brain activities through TMS has also been found to be a contributing factor to these positive outcomes. It is essential to employ more techniques, participants, and stimulation parameters and targets in the future.
Collapse
Affiliation(s)
- Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Ziwei Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| |
Collapse
|
4
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
5
|
Tang VM, Ibrahim C, Rodak T, Goud R, Blumberger DM, Voineskos D, Le Foll B. Managing substance use in patients receiving therapeutic repetitive transcranial magnetic stimulation: A scoping review. Neurosci Biobehav Rev 2023; 155:105477. [PMID: 38007879 DOI: 10.1016/j.neubiorev.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an invaluable treatment option for neuropsychiatric disorders. Co-occurring recreational and nonmedical substance use can be common in those presenting for rTMS treatment, and it is unknown how it may affect the safety and efficacy of rTMS for the treatment of currently approved neuropsychiatric indications. This scoping review aimed to map the literature on humans receiving rTMS and had a history of any type of substance use. The search identified 274 articles providing information on inclusion/exclusion criteria, withdrawal criteria, safety protocols, type of rTMS and treatment parameters, adverse events and effect on primary outcomes that related to substance use. There are neurophysiological effects of substance use on cortical excitability, although the relevance to clinical rTMS practice is unknown. The current literature supports the safety and feasibility of delivering rTMS to those who have co-occurring neuropsychiatric disorder and substance use. However, specific details on how varying degrees of substance use alters the safety, efficacy, and mechanisms of rTMS remains poorly described.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada.
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Terri Rodak
- CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Daphne Voineskos
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada; CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| |
Collapse
|
6
|
Wen X, Yue L, Du Z, Li L, Zhu Y, Yu D, Yuan K. Implications of neuroimaging findings in addiction. PSYCHORADIOLOGY 2023; 3:kkad006. [PMID: 38666116 PMCID: PMC10917371 DOI: 10.1093/psyrad/kkad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 04/28/2024]
Affiliation(s)
- Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhe Du
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| |
Collapse
|
7
|
Wang C, Zeng Q, Yuan Z, Wang W, Shen M. Effects of Low-Frequency (0.5 Hz) and High-Frequency (10 Hz) Repetitive Transcranial Magnetic Stimulation on Neurological Function, Motor Function, and Excitability of Cortex in Ischemic Stroke Patients. Neurologist 2023; 28:11-18. [PMID: 35452441 PMCID: PMC9812416 DOI: 10.1097/nrl.0000000000000435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique. The purpose of our study is to explore the effects of low-frequency (0.5 Hz) and high-frequency (10 Hz) rTMS on neurological function, motor function, and excitability of cortex in Chinese ischemic stroke patients. MATERIALS AND METHODS A total of 240 ischemic stroke patients were collected. The National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), motor-evoked potential (MEP) cortical latency, central motor conduction time (CMCT), Fugel-Meyer assessment (FMA), Berg balance scale (BBS), and modified Barthel index (MBI) scores were recorded. RESULTS After treatment, the NIHSS, mRS, MEP cortical latency, CMCT, FMA, BBS, and MBI scores of the high-frequency group and low-frequency group were significantly improved than the sham stimulation group, and the changes in the low-frequency group were more significant (adjusted P <0.05). Compared with the sham stimulation group, high-frequency stimulation reduced the NIHSS score by 9.5%, mRS score by 12.6%, MEP latency by 2.5%, and CMCT by 5.8%, and increased the upper limb FMA scale by 16.4%, lower limb FMA scale by 8.8%, BBS by 26.3%, and MBI by 9.3%, while low-frequency stimulation reduced the NIHSS score by 23.8%, mRS score by 25.3%, MEP Latency by 11.7%, and CMCT by 9.1%, and increased the upper limb FMA scale by 24.1%, lower limb FMA scale by 18.4%, BBS by 27.4%, and MBI by 23.7% in our cohort. CONCLUSIONS Low-frequency rTMS is better than high-frequency rTMS stimulation in improving neurological function, motor function, and excitability of cortex in ischemic stroke.
Collapse
|
8
|
Tang Z, Zhu Z, Xu J. Psychological Effects of Repetitive Transcranial Magnetic Stimulation on Individuals With Methamphetamine Use Disorder: A Systematic Review and Meta-Analysis. Biol Res Nurs 2023; 25:117-128. [PMID: 35999040 DOI: 10.1177/10998004221122522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the effects of rTMS on drug craving, depression, anxiety, sleep, and cognitive function in methamphetamine (MA) dependent individuals. DATA SOURCES AND METHODS Randomized controlled trials (RCTs) of rTMS interventions for MA-dependent patients were searched through PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Wanfang database, Chongqing Vipers (VIP) and China Biomedical Literature Database (CBLD). The included literature was statistically processed using Revman 5.4, and STATA 16.0 for sensitivity and bias analysis. RESULTS A total of 13 papers were included, and the results of the meta-analysis showed that rTMS was effective in reducing craving scores (SMD = -1.53, 95%CI:-2.08 ∼ -0.98, p < 0.00001), improving depression (SMD = -0.32, 95%CI:-0.58 ∼ -0.07, p = 0.01) and sleep scores (WMD = -1.26, 95%CI:-2.26 ∼ -0.27, p = 0.01), but had no effect on anxiety scores (SMD = -0.42, 95%CI:-0.88 ∼ 0.03, p = 0.07); in terms of cognitive function, there were improvements in the international shopping list task (ISL), Groton maze learning task (GML) and continuous paired association learning task (CPAL), except for no effect on the social emotional cognition task (SEC) and two back task (TWOB). Subgroup analysis showed significant differences in the effects of different intervention period on craving in MA-dependent individuals. CONCLUSION rTMS was effective in reducing MA dependent individuals' cravings, alleviating depressive symptoms, improving sleep quality and language learning, collaborative learning and executive skills. Due to the small sample size of this study, a large number of RCTs are needed to validate this.
Collapse
Affiliation(s)
| | - Zhicheng Zhu
- Institute of Sports Medicine and Health, 66446Chengdu Sports University, China
| | - Jisheng Xu
- Institute of Sports Medicine and Health, 66446Chengdu Sports University, China
| |
Collapse
|
9
|
Wu MK, Satogami K, Liang CS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Hsu CW, Chen YW, Suen MW, Zeng BY, Takahashi S, Tseng PT, Li CT. Multiple comparison of different noninvasive brain stimulation and pharmacologic interventions in patients with methamphetamine use disorders: A network meta-analysis of randomized controlled trials. Psychiatry Clin Neurosci 2022; 76:633-643. [PMID: 35876620 DOI: 10.1111/pcn.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
AIM In recent decades, the prevalence of amphetamine and methamphetamine use disorders has at least doubled in some regions/countries, with accompanying high risks of drug overdose-associated mortality. Noninvasive brain stimulation (NIBS) methods may be effective treatments. However, the comparative efficacy of the NIBS protocol for amphetamine/methamphetamine use disorder (AUD/MUD) remains unknown to date. The aim of this network meta-analysis (NMA) was to compare the efficacy and acceptability of various NIBS methods/protocols for AUD/MUD management. METHODS A frequentist model-based NMA was conducted. We included randomized controlled trials (RCTs) that investigated the efficacy of NIBS and guideline-recommended pharmacologic treatments to reduce craving severity in patients with either AUD or MUD. RESULTS Twenty-two RCTs including 1888 participants met the eligibility criteria. Compared with the sham/placebo group (study = 19, subjects = 891), a combination of intermittent theta burst stimulation over the left dorsolateral prefrontal cortex (DLPFC) and continuous TBS over the left ventromedial prefrontal cortex (study = 1, subjects = 19) was associated with the largest decreases in craving severity [standardized mean difference (SMD) = -1.50; 95% confidence intervals (95%CIs) = -2.70 to -0.31]. High-frequency repetitive transcranial magnetic stimulation over the left DLPFC was associated with the largest improvements in depression and quality of sleep (study = 3, subjects = 86) (SMD = -2.48; 95%CIs = -3.25 to -1.71 and SMD = -2.43; 95%CIs = -3.38 to -1.48, respectively). The drop-out rate of most investigated treatments did not significantly differ between groups. CONCLUSION The combined TBS protocol over the prefrontal cortex was associated with the greatest improvement in craving severity. Since few studies were available for inclusion, additional large-scale randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kazumi Satogami
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil.,Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Gender Equality Education and Research Center, Asia University, Taichung, Taiwan.,Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan.,Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhou Y, Hu Y, Wang Q, Yang Z, Li J, Ma Y, Wu Q, Chen S, Yang D, Hao Y, Wang Y, Li M, Peng P, Liu T, Yang WFZ. Association between white matter microstructure and cognitive function in patients with methamphetamine use disorder. Hum Brain Mapp 2022; 44:304-314. [PMID: 35838008 PMCID: PMC9842920 DOI: 10.1002/hbm.26020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Methamphetamine use disorder (MUD) has been associated with broad neurocognitive impairments. While the cognitive impairments of MUD have been demonstrated, the neuropathological underpinnings remain inadequately understood. To date, the published human diffusion tensor imaging (DTI) studies involving the correlation between diffusion parameters and neurocognitive function in MUD are limited. Hence, the present study aimed to examine the association between cognitive performance and white matter microstructure in patients with MUD. Forty-five patients with MUD and 43 healthy controls (HCs) completed their demographic information collection, cognitive assessments, and DTI imaging. DTI images were preprocessed to extract fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of various fiber tracts. Univariate tests were used to examine group differences in cognitive assessments and DTI metrics. Linear regression was used to examine the relationship between these two metrics. The results revealed that patients with MUD had lower subset scores of the MATRICS Consensus Cognitive Battery (MCCB), which reflects five cognitive domains: processing speed, attention, verbal learning, visual learning, problem-solving. Patients with MUD also had significantly higher AD, MD, and RD values of the left superior longitudinal fasciculus than HCs. Furthermore, the RD value of the left superior longitudinal fasciculus was a significant predictor of processing speed and problem-solving ability, as shown by the digit-symbol coding test and NAB-Mazes scores, respectively. Findings extended our understanding of white matter microstructure that is related to neurocognitive deficits in MUD and provided potential targets for the prevention and treatment of this chronic disorder.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina,Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yang Hu
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinguang Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shubao Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Dong Yang
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Pu Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
11
|
Chen QM, Yao FR, Sun HW, Chen ZG, Ke J, Liao J, Cai XY, Yu LQ, Wu ZY, Wang Z, Pan X, Liu HY, Li L, Zhang QQ, Ling WH, Fang Q. Combining inhibitory and facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment improves motor function by modulating GABA in acute ischemic stroke patients. Restor Neurol Neurosci 2021; 39:419-434. [PMID: 34924405 DOI: 10.3233/rnn-211195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The combination of inhibitory and facilitatory repetitive transcranial magnetic stimulation (rTMS) can improve motor function of stroke patients with undefined mechanism. It has been demonstrated that rTMS exhibits a neuro-modulatory effect by regulating the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) in other diseases. OBJECTIVES To evaluate the effect of combined inhibitory and facilitatory rTMS on GABA in the primary motor cortex (M1) for treating motor dysfunction after acute ischemic stroke. METHODS 44 ischemic stroke patients with motor dysfunction were randomly divided into two groups. The treatment group was stimulated with 10 Hz rTMS at the ipsilesional M1 and 1 Hz rTMS at the contralesional M1. The sham group received bilateral sham stimulation at the motor cortices. The GABA level in the bilateral M1 was measured by proton magnetic resonance spectroscopy (1H-MRS) at 24 hours before and after rTMS stimulation. Motor function was measured using the Fugl-Meyer Assessment (FMA). The clinical assessments were performed before and after rTMS and after 3 months. RESULTS The treatment group exhibited a greater improvement in motor function 24 hours after rTMS compared to the sham group. The increased improvement in motor function lasted for at least 3 months after treatment. Following 4 weeks of rTMS, the GABA level in the ipsilesional M1 of the treatment group was significantly decreased compared to the sham group. Furthermore, the change of FMA score for motor function was negatively correlated to the change of the GABA:Cr ratio. Finally, the effect of rTMS on motor function outcome was partially mediated by GABA level change in response to the treatment (27.7%). CONCLUSIONS Combining inhibitory and facilitatory rTMS can decrease the GABA level in M1, which is correlated to the improvement of motor function. Thus, the GABA level in M1 may be a potential biomarker for treatment strategy decisions regarding rTMS neuromodulatory interventions.
Collapse
Affiliation(s)
- Qing-Mei Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fei-Rong Yao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Wei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juan Liao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiu-Ying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Qiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhen-Yan Wu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhi Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xi Pan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hao-Yu Liu
- Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Li
- Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Quan Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wei-Hua Ling
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Cannabinoid Receptor Type 1 Regulates Drug Reward Behavior via Glutamate Decarboxylase 67 Transcription. Int J Mol Sci 2021; 22:ijms221910486. [PMID: 34638827 PMCID: PMC8508987 DOI: 10.3390/ijms221910486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Interaction of cannabinoid receptor type 1 (CB1) and GABAergic neuronal activity is involved in drug abuse-related behavior. However, its role in drug-dependent Pavlovian conditioning is not well understood. In this study, we aimed to evaluate the effects of a CB1 agonist, JWH-210, on the development of conditioned place preference (CPP)-induced by methamphetamine (METH). Pretreatment with a synthetic cannabinoid, JWH-210 (CB1 agonist), increased METH-induced CPP score and METH-induced dopamine release in acute striatal slices. Interestingly, CB1 was expressed in glutamate decarboxylase 67 (GAD67) positive cells, and overexpression of CB1 increased GAD67 expression, while CB1 knockdown reduced GAD67 expression in vivo and in vitro. GAD67 is known as an enzyme involved in the synthesis of GABA. CB1 knockdown in the mice striatum increased METH-induced CPP. When GAD67 decreased in the mice striatum, mRNA level of CB1 did not change, suggesting that CB1 can regulate GAD67 expression. GAD67 knockdown in the mouse striatum augmented apomorphine (dopamine receptor D2 agonist)–induced climbing behavior and METH-induced CPP score. Moreover, in the human brain, mRNA level of GAD67 was found to be decreased in drug users. Therefore, we suggest that CB1 potentiates METH-induced CPP through inhibitory GABAergic regulation of dopaminergic neuronal activity.
Collapse
|
13
|
Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2136076. [PMID: 34484386 PMCID: PMC8416368 DOI: 10.1155/2021/2136076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.
Collapse
|
14
|
Koriem KM, Selim AY, Mazen RA. N-acetylcysteine-amide improves tissue oxidative stress, DNA damage, and proteins disappearance in methamphetamine toxicity more efficiently than N-acetyl-L-cysteine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
The exploration of optimized protocol for repetitive transcranial magnetic stimulation in the treatment of methamphetamine use disorder: A randomized sham-controlled study. EBioMedicine 2020; 60:103027. [PMID: 32980696 PMCID: PMC7522737 DOI: 10.1016/j.ebiom.2020.103027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background The prefrontal-striatal circuit is a core circuit related to substance dependence. Previous studies have found that repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex (DLPFC) (key region of executive network) had limited responses, while inhibiting hyperactivation of ventromedial prefrontal cortex (vmPFC) (key region of limbic network) may be another strategy. However, there is currently no comparison between these two treatment locations. Methods Seventy-four methamphetamine-dependent patients were randomly assigned to one of treatment groups with two-week treatment: (1) Group A: intermittent theta-burst stimulation (iTBS) targeting the left DLPFC; (2) Group B: continuous theta-burst stimulation (cTBS) targeting the left vmPFC; (3) Group C: a combination of treatment protocol of Group A and Group B; (4) Group D: sham theta-burst stimulation. The primary endpoint was the change of cue-induced craving. The trial was registered at ClinicalTrials.gov (NCT03736317). Findings The three real TBS groups had more craving decrease effect than the sham group (p<0.01). The changes of craving were positively correlated with the improvement of anxiety and withdrawal symptom. With the highest respondence rate, group C also had shorter respondence time than Group A (p = 0.03). Group C was effective in improve depression symptoms (p = 0.04) and withdrawal symptom (p = 0.02) compared with Group D. Besides, Group C was significant in improve sleep quality (p = 0.04) compared with Group A. Baseline depression scores and spatial working memory were positively predicting the intervention response. Interpretation The rTMS paradigms involving vmPFC with cTBS are optimized protocols and well-tolerated for methamphetamine-dependent individuals, and they may have better efficacies compared with DLPFC iTBS. Emotion and cognitive function are rTMS treatment response predictors for methamphetamine-dependent patients. Funding This work was supported by the National Key R&D Program of China (2017YFC1310400), National Natural Science Foundation of China (81,771,436, 81,801,319, 81,601,164), Shanghai Municipal Health and Family Planning Commission (2017ZZ02021), Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai (2017YQ013), Qihang Project of Shanghai Mental Health Center (2019-QH-05), Shanghai Sailing Program (19YF1442100), Shanghai Key Laboratory of Psychotic Disorders (13DZ2260500), Program of Shanghai Academic Research Leader (17XD1403300), Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), and Shanghai Clinical Research Center for Mental Health (19MC1911100).
Collapse
|