1
|
Dettori M, Riccardi N, Canetti D, Antonello RM, Piana AF, Palmieri A, Castiglia P, Azara AA, Masia MD, Porcu A, Ginesu GC, Cossu ML, Conti M, Pirina P, Fois A, Maida I, Madeddu G, Babudieri S, Saderi L, Sotgiu G. Infections in lung transplanted patients: A review. Pulmonology 2024; 30:287-304. [PMID: 35710714 DOI: 10.1016/j.pulmoe.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation can improve the survival of patients with severe chronic pulmonary disorders. However, the short- and long-term risk of infections can increase morbidity and mortality rates. A non-systematic review was performed to provide the most updated information on pathogen, host, and environment-related factors associated with the occurrence of bacterial, fungal, and viral infections as well as the most appropriate therapeutic options. Bacterial infections account for about 50% of all infectious diseases in lung transplanted patients, while viruses represent the second cause of infection accounting for one third of all infections. Almost 10% of patients develop invasive fungal infections during the first year after lung transplant. Pre-transplantation comorbidities, disruption of physical barriers during the surgery, and exposure to nosocomial pathogens during the hospital stay are directly associated with the occurrence of life-threatening infections. Empiric antimicrobial treatment after the assessment of individual risk factors, local epidemiology of drug-resistant pathogens and possible drug-drug interactions can improve the clinical outcomes.
Collapse
Affiliation(s)
- M Dettori
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - N Riccardi
- StopTB Italia Onlus, Milan, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - D Canetti
- StopTB Italia Onlus, Milan, Italy; Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - R M Antonello
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste, Italy
| | - A F Piana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - A Palmieri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - P Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - A A Azara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - M D Masia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - A Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - G C Ginesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - M L Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - M Conti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - P Pirina
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - A Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - I Maida
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - G Madeddu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - S Babudieri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - L Saderi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - G Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy; StopTB Italia Onlus, Milan, Italy.
| |
Collapse
|
2
|
Ortiz SC, Hull CM. Biogenesis, germination, and pathogenesis of Cryptococcus spores. Microbiol Mol Biol Rev 2024; 88:e0019623. [PMID: 38440970 PMCID: PMC10966950 DOI: 10.1128/mmbr.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
SUMMARYSpores are primary infectious propagules for the majority of human fungal pathogens; however, relatively little is known about their fundamental biology. One strategy to address this deficiency has been to develop the basidiospores of Cryptococcus into a model for pathogenic spore biology. Here, we provide an update on the state of the field with a comprehensive review of the data generated from the study of Cryptococcus basidiospores from their formation (sporulation) and differentiation (germination) to their roles in pathogenesis. Importantly, we provide support for the presence of basidiospores in nature, define the key characteristics that distinguish basidiospores from yeast cells, and clarify their likely roles as infectious particles. This review is intended to demonstrate the importance of basidiospores in the field of Cryptococcus research and provide a solid foundation from which researchers who wish to study sexual spores in any fungal system can launch their studies.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Magda G. Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Infect Dis Clin North Am 2024; 38:121-147. [PMID: 38280760 DOI: 10.1016/j.idc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Magda
- Columbia University Lung Transplant Program, Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street PH-14, New York, NY 10032, USA.
| |
Collapse
|
4
|
Boscolo A, Cattelan A, Marinello S, Medici F, Pettenon G, Congedi S, Sella N, Presa N, Pistollato E, Silvestrin S, Biscaro M, Muraro L, Peralta A, Mazzitelli M, Dell’Amore A, Rea F, Navalesi P. Fungal Infections and Colonization after Bilateral Lung Transplant: A Six-Year Single-Center Experience. J Fungi (Basel) 2024; 10:80. [PMID: 38276026 PMCID: PMC10817539 DOI: 10.3390/jof10010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Fungal infections (FIs) are one of the leading causes of morbidity and mortality within the first year of lung transplant (LT) in LT recipients (LTRs). Their prompt identification and treatment are crucial for a favorable LTR outcome. The objectives of our study were to assess (i) the FI incidence and colonization during the first year after a bilateral LT, (ii) the risk factors associated with FI and colonization, and (iii) the differences in fungal incidence according to the different prophylactic strategies. All bilateral LTRs admitted to the intensive care unit of Padua University Hospital were retrospectively screened, excluding patients <18 years of age, those who had been re-transplanted, and those who had received ventilation and/or extracorporeal membrane oxygenation before LT. Overall, 157 patients were included. A total of 13 (8%) patients developed FI, and 36 (23%) developed colonization, which was mostly due to Aspergillus spp. We did not identify independent risk factors for FI. Groups of patients receiving different prophylactic strategies reported a similar incidence of both FI and colonization. The incidence of FI and fungal colonization was 8% and 23%, respectively, with no differences between different antifungal prophylaxes or identified predisposing factors. Further studies with larger numbers are needed to confirm our results.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Annamaria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Serena Marinello
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Francesca Medici
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Giovanni Pettenon
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Sabrina Congedi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Nicolò Sella
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Nicolò Presa
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Elisa Pistollato
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Stefano Silvestrin
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Martina Biscaro
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Luisa Muraro
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Arianna Peralta
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Andrea Dell’Amore
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Paolo Navalesi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| |
Collapse
|
5
|
Crone CG, Wulff SM, Ledergerber B, Helweg-Larsen J, Bredahl P, Arendrup MC, Perch M, Helleberg M. Invasive Aspergillosis among Lung Transplant Recipients during Time Periods with Universal and Targeted Antifungal Prophylaxis-A Nationwide Cohort Study. J Fungi (Basel) 2023; 9:1079. [PMID: 37998886 PMCID: PMC10672607 DOI: 10.3390/jof9111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The optimal prevention strategy for invasive aspergillosis (IA) in lung transplant recipients (LTXr) is unknown. In 2016, the Danish guidelines were changed from universal to targeted IA prophylaxis. Previously, we found higher rates of adverse events in the universal prophylaxis period. In a Danish nationwide study including LTXr, for 2010-2019, we compared IA rates in time periods with universal vs. targeted prophylaxis and during person-time with vs. person-time without antifungal prophylaxis. IA hazard rates were analyzed in multivariable Cox models with adjustment for time after LTX. Among 295 LTXr, antifungal prophylaxis was initiated in 183/193 and 6/102 during the universal and targeted period, respectively. During the universal period, 62% discontinued prophylaxis prematurely. The median time on prophylaxis was 37 days (IQR 11-84). IA was diagnosed in 27/193 (14%) vs. 15/102 (15%) LTXr in the universal vs. targeted period, with an adjusted hazard ratio (aHR) of 0.94 (95% CI 0.49-1.82). The aHR of IA during person-time with vs. person-time without antifungal prophylaxis was 0.36 (95% CI 0.12-1.02). No difference in IA was found during periods with universal vs. targeted prophylaxis. Prophylaxis was protective of IA when taken. Targeted prophylaxis may be preferred over universal due to comparable IA rates and lower rates of adverse events.
Collapse
Affiliation(s)
- Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Bruno Ledergerber
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Jannik Helweg-Larsen
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Pia Bredahl
- Department of Thoracic Anesthesia, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark;
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
- Department of Clinical Microbiology, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
6
|
Zhang X, Tang X, Yi X, Lei Y, Lu S, Li T, Yue R, Pan L, Feng G, Huang X, Wang Y, Cheng D. Etiologic characteristics revealed by mNGS-mediated ultra-early and early microbiological identification in airway secretions from lung transplant recipients. Front Immunol 2023; 14:1271919. [PMID: 37809079 PMCID: PMC10551139 DOI: 10.3389/fimmu.2023.1271919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Post-operative etiological studies are critical for infection prevention in lung transplant recipients within the first year. In this study, mNGS combined with microbial culture was applied to reveal the etiological characteristics within one week (ultra-early) and one month (early) in lung transplant recipients, and the epidemiology of infection occurred within one month. Methods In 38 lung transplant recipients, deep airway secretions were collected through bronchofiberscope within two hours after the operation and were subjected to microbial identification by mNGS and microbial culture. The etiologic characteristics of lung transplant recipients were explored. Within one month, the infection status of recipients was monitored. The microbial species detected by mNGS were compared with the etiological agents causing infection within one month. Results The detection rate of mNGS in the 38 airway secretions specimens was significantly higher than that of the microbial culture (P<0.0001). MNGS identified 143 kinds of pathogenic microorganisms; bacterial pathogens account for more than half (72.73%), with gram-positive and -negative bacteria occupying large proportions. Fungi such as Candida are also frequently detected. 5 (50%) microbial species identified by microbial culture had multiple drug resistance (MDR). Within one month, 26 (68.42%) recipients got infected (with a median time of 9 days), among which 10 (38.46%) cases were infected within one week. In the infected recipients, causative agents were detected in advance by mNGS in 9 (34.62%) cases, and most of them (6, 66.67%) were infected within one week (ultra-early). In the infection that occurred after one week, the consistency between mNGS results and the etiological agents was decreased. Conclusion Based on the mNGS-reported pathogens in airway secretions samples collected within two hours, the initial empirical anti-infection regimes covering the bacteria and fungi are reasonable. The existence of bacteria with MDR forecasts the high risk of infection within 48 hours after transplant, reminding us of the necessity to adjust the antimicrobial strategy. The predictive role of mNGS performed within two hours in etiological agents is time-limited, suggesting continuous pathogenic identification is needed after lung transplant.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuemei Tang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoli Yi
- Medical Department, Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yu Lei
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianlong Li
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Nguyen A, Chen J, Isaza E, Panchal N, Deiter F, Hoover J, Trinh B, Hays SR, Golden JA, Singer JP, Brzezinski M, Greenland JR, Kukreja J. Biofire pneumonia panel in lung donors: faster detection but limited pathogens. Transpl Infect Dis 2023; 25:e14091. [PMID: 37428868 DOI: 10.1111/tid.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Culture of bronchoalveolar lavage (BAL) specimens takes time to report. We tested whether a molecular diagnostic test could accelerate donor lung assessment and treatment. METHODS We compared BioFire Film Array Pneumonia Panel (BFPP) with standard of care (SOC) tests on lung allograft samples at three time points: (1) donor BAL at organ recovery, (2) donor bronchial tissue and airway swab at implantation, and (3) first recipient BAL following lung implantation. Primary outcomes were the difference in time to result (Wilcoxon signed-ranked tests) and the agreement in results between BFPP and SOC assays (Gwet's agreement coefficient). RESULTS We enrolled 50 subjects. In donor lung BAL specimens, BFPP detected 52 infections (14 out of 26 pathogens in the panel). Viral and bacterial BFPP results were reported 2.4 h (interquartile range, IQR 2.0-6.4) following BAL versus 4.6 h (IQR 1.9-6.0, p = 0.625) for OPO BAL viral SOC results and 66 h (IQR 47-87, p < .0001) for OPO BAL bacterial SOC results. Although there was high overall agreement of results between BAL-BFPP versus OPO BAL-SOC tests (Gwet's AC p < .001 for all), the level of agreement differed among 26 pathogens designed in BFPP and differed by types of specimens. BFPP could not detect many infections identified by SOC assays. CONCLUSIONS BFPP decreased time to detection of lung pathogens among donated lungs, but it cannot replace SOC tests due to the limited number of pathogens in the panel.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joy Chen
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Erin Isaza
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Niel Panchal
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Fred Deiter
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jonathan Hoover
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Binh Trinh
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Steve R Hays
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey A Golden
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jonathan P Singer
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Marek Brzezinski
- Department of Anesthesia and Perioperative Care, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - John R Greenland
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jasleen Kukreja
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
9
|
Opportunistic Infections Post-Lung Transplantation: Viral, Fungal, and Mycobacterial. Clin Chest Med 2023; 44:159-177. [PMID: 36774162 DOI: 10.1016/j.ccm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Opportunistic infections are a leading cause of lung transplant recipient morbidity and mortality. Risk factors for infection include continuous exposure of the lung allograft to the external environment, high levels of immunosuppression, impaired mucociliary clearance and decreased cough reflex, and impact of the native lung microbiome in single lung transplant recipients. Infection risk is mitigated through careful pretransplant screening of recipients and donors, implementation of antimicrobial prophylaxis strategies, and routine surveillance posttransplant. This review describes common viral, fungal, and mycobacterial infectious after lung transplant and provides recommendations on prevention and treatment.
Collapse
|
10
|
Fungal Infections in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
We aim to understand the most common fungal infections associated with the post-lung transplant period, how to diagnose, treat, and prevent them based on the current guidelines published and our center’s experience.
Recent Findings
Different fungi inhabit specific locations. Diagnosis of invasive fungal infections (IFIs) depends on symptoms, radiologic changes, and a positive microbiological or pathology data. There are several molecular tests that have been used for diagnosis. Exposure to fungal prophylaxis can predispose lung transplant recipients to these emerging molds. Understanding and managing medication interactions and drug monitoring are essential in successfully treating IFIs.
Summary
With the increasing rate of lung transplantations being performed, and the challenges posed by the immunosuppressive regimen, understanding the risk and managing the treatment of fungal infections are imperative to the success of a lung transplant recipient. There are many ongoing clinical trials being conducted in hopes of developing novel antifungals.
Collapse
|
11
|
Pióro A, Latos M, Urlik M, Stącel T, Gawęda M, Pandel A, Przybyłowski P, Knapik P, Ochman M. Antifungal Prophylaxis and Treatment Among Lung Transplant Recipients in Early Postoperative Stage: A Single-Center Study. Transplant Proc 2022; 54:1104-1108. [DOI: 10.1016/j.transproceed.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
|
12
|
De Mol W, Bos S, Beeckmans H, Lagrou K, Spriet I, Verleden GM, Vos R. Antifungal Prophylaxis After Lung Transplantation: Where Are We Now? Transplantation 2021; 105:2538-2545. [PMID: 33982907 DOI: 10.1097/tp.0000000000003717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung transplantation is an important treatment option for various end-stage lung diseases. However, survival remains limited due to graft rejection and infections. Despite that fungal infections are frequent and carry a bad prognosis, there is currently no consensus on efficacy, optimal drug, route, or duration of antifungal prophylaxis. This narrative review summarizes current strategies for antifungal prophylaxis after lung transplantation. METHODS English language articles in Embase, Pubmed, UptoDate, and bibliographies were used to assess the efficacy and safety of available antifungal agents for prophylaxis in adult lung transplant recipients. RESULTS Overall, there are limited high-quality data. Universal prophylaxis is more widely used and may be preferable over targeted prophylaxis. Both formulations of inhaled amphotericin B and systemic azoles are effective at reducing fungal infection rates, yet with their own specific advantages and disadvantages. The benefit of combination regimens has yet to be proven. Considering the post-transplant timing of the onset of fungal infections, postoperative prophylaxis during the first postoperative months seems indicated for most patients. CONCLUSIONS Based on existing literature, universal antifungal prophylaxis with inhaled amphotericin B and systemic voriconazole for at least 3-6 mo after lung transplantation may be advisable, with a slight preference for amphotericin B because of its better safety profile.
Collapse
Affiliation(s)
- Wim De Mol
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department Pharmacy, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Ju C, Lian Q, Xu X, Cao Q, Lan C, Chen R, He J. Epidemiology and Prognosis of Invasive Fungal Disease in Chinese Lung Transplant Recipients. Front Med (Lausanne) 2021; 8:718747. [PMID: 34778284 PMCID: PMC8578561 DOI: 10.3389/fmed.2021.718747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
This study explored the epidemiology, risk factors, and prognosis of invasive fungal disease (IFD) in Chinese lung transplant recipients (LTRs). This retrospective cohort study included patients who received lung transplants at four hospitals in South China between January 2015 and June 2019. The participants were divided into IFD and non-IFD (NIFD) groups. The final analysis included 226 LTRs (83.2% males) aged 55.0 ± 14.2 years old. Eighty-two LTRs (36.3%) developed IFD (proven or probable diagnosis). The most common pathogens were Aspergillus (57.3%), Candida (19.5%), and Pneumocystis jiroveci (13.4%). Multivariate logistic regression revealed that anastomotic disease [odds ratio (OR): 11.86; 95% confidence interval (95%CI): 4.76–29.54; P < 0.001], cytomegalovirus (CMV) pneumonia (OR: 3.85; 95%CI: 1.88–7.91; P = 0.018), and pre-transplantation IFD (OR: 7.65; 95%CI: 2.55–22.96; P < 0.001) were associated with higher odds of IFD, while double-lung transplantation (OR: 0.40; 95%CI: 0.19–0.79; P = 0.009) was associated with lower odds of IFD. Logistic regression analysis showed that anastomotic disease was associated with higher odds of death (OR: 5.01; 95%CI: 1.24–20.20; P = 0.02) and that PJP prophylaxis was associated with lower odds of death (OR: 0.01; 95%CI: 0.001–0.11; P < 0.001). Invasive fungal disease is prevalent among LTRs in southern China, with Aspergillus the most common pathogen. Prophylaxis should be optimized based on likely pathogens.
Collapse
Affiliation(s)
- Chunrong Ju
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingdong Cao
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, China
| | - Cong Lan
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Kallee S, Scharf C, Schroeder I, Paal M, Vogeser M, Irlbeck M, Zander J, Zoller M, Jung J, Kneidinger N, Schneider C, Michel S, Liebchen U. Comparing posaconazole and itraconazole for antifungal prophylaxis in critically ill lung transplant recipients: Efficacy and plasma concentrations. Transpl Infect Dis 2021; 23:e13675. [PMID: 34166573 DOI: 10.1111/tid.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Posaconazole and itraconazole are commonly used for systemic antifungal prophylaxis after lung transplantation. The aim of this study on critically ill lung transplant recipients was to assess the rate of adequate plasma concentrations and the frequency of fungal-induced transitions from antifungal prophylaxis to therapy after the administration of either posaconazole or itraconazole for systemic prophylaxis. METHODS Critically ill lung transplant recipients with postoperative posaconazole or itraconazole prophylaxis and therapeutic drug monitoring from February 2016 to November 2019 were retrospectively included in the study. Positive fungal cultures or Aspergillus antigen tests resulting in a transition from antifungal prophylaxis to therapy were analyzed from the first day of prophylaxis until 7 days after the last sample for each patient. Adequate plasma concentrations were defined as ≥500 µg/L for itraconazole and ≥700 µg/L for posaconazole. RESULTS Two hundred seventy-five samples from 73 patients were included in the analysis. Overall, 60% of the posaconazole and 55% of the itraconazole concentrations were subtherapeutic. Administration of posaconazole suspension resulted significantly (P < .01) more often in subtherapeutic concentrations than tablets (68% vs 10%). Patients treated with posaconazole showed less positive fungal records resulting in a transition from prophylaxis to therapy than patients treated with itraconazole (10% vs 33%, P-value: .029). The detection of a fungal pathogen was not associated with the measured plasma concentrations or the achievement of the target concentrations. CONCLUSION Our findings suggest that posaconazole should be used instead of itraconazole for systemic prophylaxis in critically ill lung transplant recipients.
Collapse
Affiliation(s)
- Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Ines Schroeder
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Jette Jung
- Max-von-Pettenkofer-Institute Munich, Ludwig Maximilian University, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christian Schneider
- Department of Thoracic Surgery, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|