1
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
2
|
Zhu J, Zhang Y. Dexmedetomidine inhibits the migration, invasion, and glycolysis of glioblastoma cells by lactylation of c-myc. Neurol Res 2024; 46:1105-1112. [PMID: 39193894 DOI: 10.1080/01616412.2024.2395069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression. OBJECTIVE We investigated the effects of Dex on the migration, invasion, and glycolysis in GBM. METHODS The concentration of Dex was determined using the cell counting kit-8 assay. The impacts of Dex on biological behaviors of GBM cells were assessed using Transwell assay, XF96 extracellular flux analysis, and western blot. The expression of c-Myc was examined using reverse transcription-quantitative polymerase chain reaction. The lactylation or stability of c-Myc was measured by western blot after immunoprecipitation or cycloheximide treatment. RESULTS We found that Dex (200 nM) inhibited GBM cell viability, migration, invasion, and glycolysis. C-Myc was highly expressed in GBM cells and was decreased by Dex treatment. Moreover, Dex suppressed lactylated c-Myc levels via suppressing glycolysis, thereby reducing the protein stability of c-Myc. Sodium lactate treatment abrogated the effects of Dex on the biological behaviors of GBM cells. CONCLUSION Dex suppressed the migration, invasion, and glycolysis of GBM cells via inhibiting lactylation of c-Myc and suppressing the c-Myc stability, suggesting that Dex may be a novel therapeutic drug for GBM treatment.
Collapse
Affiliation(s)
- Jianglian Zhu
- Neurological Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, China
| | - Yundong Zhang
- Neurological Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Yubei District, Chongqing, China
| |
Collapse
|
3
|
Kundrapu DB, Chaitanya AK, Manaswi K, Kumari S, Malla R. Quercetin and taxifolin inhibits TMPRSS2 activity and its interaction with EGFR in paclitaxel-resistant breast cancer cells: An in silico and in vitro study. Chem Biol Drug Des 2024; 104:e14600. [PMID: 39075030 DOI: 10.1111/cbdd.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protease/serine (TMPRSS2), a type II transmembrane serine protease, plays a crucial role in different stages of cancer. Recent studies have reported that the triggering epidermal growth factor receptor (EGFR) activation through protease action promotes metastasis. However, there are no reports on the interaction of TMPRSS2 with EGFR, especially in triple-negative triple negative (TNBC). The current study investigates the unexplored interaction between TMPRSS2 and EGFR, which are key partners mediating metastasis. This interaction is explored for potential targeting using quercetin (QUE) and taxifolin (TAX). TMPRSS2 expression patterns in breast cancer (BC) tissues and subtypes have been predicted, with the prognostic significance assessed using the GENT2.0 database. Validation of TMPRSS2 expression was performed in normal and TNBC tissues, including drug-resistant cell lines, utilizing GEO datasets. TMPRSS2 was further validated as a predictive biomarker for FDA-approved chemotherapeutics through transcriptomic data from BC patients. The study demonstrated the association of TMPRSS2 with EGFR through in silico analysis and validates the findings in TNBC cohorts using the TIMER2.0 web server and the TCGA dataset through C-Bioportal. Molecular docking and molecular dynamic simulation studies identified QUE and TAX as best leads targeting TMPRSS2. They inhibited cell-free TMPRSS2 activity like clinical inhibitor of TMPRSS2, Camostat mesylate. In cell-based assays focused on paclitaxel-resistant TNBC (TNBC/PR), QUE and TAX demonstrated potent inhibitory activity against extracellular and membrane-bound TMPRSS2, with low IC50 values. Furthermore, ELISA and cell-based AlphaLISA assays demonstrated that QUE and TAX inhibit the interaction of TMPRSS2 with EGFR. Additionally, QUE and TAX exhibited significant inhibition of proliferation and cell cycle accompanied by notable alterations in the morphology of TNBC/PR cells. This study provides valuable insights into potential of QUE and TAX targeting TMPRSS2 overexpressing TNBC.
Collapse
Affiliation(s)
- Durga Bhavani Kundrapu
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Amajala Krishna Chaitanya
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Kothapalli Manaswi
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
4
|
Ho CY, Wei CY, Zhao RW, Ye YL, Huang HC, Lee JC, Cheng FJ, Huang WC. Artemisia argyi extracts overcome lapatinib resistance via enhancing TMPRSS2 activation in HER2-positive breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3389-3399. [PMID: 38445457 DOI: 10.1002/tox.24202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.
Collapse
Affiliation(s)
- Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Division of Family Medicine, Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Cheng-Yen Wei
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ruo-Wen Zhao
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Lun Ye
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jen-Chih Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: dexmedetomidine in cancer therapy. Oncoimmunology 2024; 13:2327143. [PMID: 38481729 PMCID: PMC10936656 DOI: 10.1080/2162402x.2024.2327143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that is widely used in intensive and anesthetic care for its sedative and anxiolytic properties. DEX has the capacity to alleviate inflammatory pain while limiting immunosuppressive glucocorticoid stress during major surgery, thus harboring therapeutic benefits for oncological procedures. Recently, the molecular mechanisms of DEX-mediated anticancer effects have been partially deciphered. Together with additional preclinical data, these mechanistic insights support the hypothesis that DEX-induced therapeutic benefits are mediated via the stimulation of adaptive anti-tumor immune responses. Similarly, published clinical trials including ancillary studies described an immunostimulatory role of DEX during the perioperative period of cancer surgery. The impact of DEX on long-term patient survival remains elusive. Nevertheless, DEX-mediated immunostimulation offers an interesting therapeutic option for onco-anesthesia. Our present review comprehensively summarizes data from preclinical and clinical studies as well as from ongoing trials with a distinct focus on the role of DEX in overcoming (tumor microenvironment (TME)-imposed) cancer therapy resistance. The objective of this update is to guide clinicians in their choice toward immunostimulatory onco-anesthetic agents that have the capacity to improve disease outcome.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département Anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
6
|
Xiong SY, Wen HZ, Dai LM, Lou YX, Wang ZQ, Yi YL, Yan XJ, Wu YR, Sun W, Chen PH, Yang SZ, Qi XW, Zhang Y, Wu GY. A brain-tumor neural circuit controls breast cancer progression in mice. J Clin Invest 2023; 133:e167725. [PMID: 37847562 PMCID: PMC10721160 DOI: 10.1172/jci167725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve-derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.
Collapse
Affiliation(s)
- Si-Yi Xiong
- Breast and Thyroid Surgery, Southwest Hospital
| | - Hui-Zhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Li-Meng Dai
- Department of Medical Genetics, College of Basic Medical Sciences
| | - Yun-Xiao Lou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Zhao-Qun Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Xiao-Jing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences
| | - Ya-Ran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, and
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Peng-Hui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| | - Si-Zhe Yang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences
| |
Collapse
|
7
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
8
|
Hu J, Gong C, Xiao X, Chen L, Zhang Y, Li X, Li Y, Zang X, Huang P, Zhou S, Chen C. Association between intraoperative dexmedetomidine and all-cause mortality and recurrence after laparoscopic resection of colorectal cancer: Follow-up analysis of a previous randomized controlled trial. Front Oncol 2023; 13:906514. [PMID: 37064099 PMCID: PMC10098183 DOI: 10.3389/fonc.2023.906514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundDexmedetomidine (DEX) has been widely applied in the anesthesia and sedation of patients with oncological diseases. However, the potential effect of DEX on tumor metastasis remains contradictory. This study follows up on patients who received intraoperative DEX during laparoscopic resection of colorectal cancer as part of a previous clinical trial, examining their outcomes 5 years later.MethodsBetween June 2015 and December 2015, 60 patients undergoing laparoscopic colorectal resection were randomly assigned to the DEX and control groups. The DEX group received an initial loading dose of 1μ/kg before surgery, followed by a continuous infusion of 0.3μg/kg/h during the operation and the Control group received an equivalent volume of saline. A 5-year follow-up analysis was conducted to evaluate the overall survival, disease-free survival, and tumor recurrence.ResultsThe follow-up analysis included 55 of the 60 patients. The DEX group included 28 patients, while the control group included 27 patients. Baseline characteristics were comparable between the two groups, except for vascular and/or neural invasion of the tumor in the DEX group (9/28 vs. 0/27, p = 0.002). We did not observe a statistically significant benefit but rather a trend toward an increase in overall survival and disease-free survival in the DEX group, 1-year overall survival (96.4% vs. 88.9%, p = 0.282), 2-year overall survival (89.3% vs. 74.1%, p = 0.144), 3-year overall survival (89.3% vs. 70.4%, p = 0.08), and 5-year overall survival (78.6% vs. 59.3%, p = 0.121). The total rates of mortality and recurrence between the two groups were comparable (8/28 vs. 11/27, p = 0.343).ConclusionAdministration of DEX during laparoscopic resection of colorectal cancer had a nonsignificant trend toward improved overall survival and disease-free survival.Clinical Trial Registrationhttp://www.chictr.org.cn/, identifier ChiCTRIOR-15006518.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pinjie Huang
- *Correspondence: Chaojin Chen, ; Shaoli Zhou, ; Pinjie Huang,
| | - Shaoli Zhou
- *Correspondence: Chaojin Chen, ; Shaoli Zhou, ; Pinjie Huang,
| | - Chaojin Chen
- *Correspondence: Chaojin Chen, ; Shaoli Zhou, ; Pinjie Huang,
| |
Collapse
|
9
|
Meng M, Gao R, Liu Z, Liu F, Du S, Song Y, He J. Ginsenosides, potential TMPRSS2 inhibitors, a trade-off between the therapeutic combination for anti-PD-1 immunotherapy and the treatment of COVID-19 infection of LUAD patients. Front Pharmacol 2023; 14:1085509. [PMID: 36992839 PMCID: PMC10040610 DOI: 10.3389/fphar.2023.1085509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Acting as a viral entry for coronavirus to invade human cells, TMPRSS2 has become a target for the prevention and treatment of COVID-19 infection. Before this, TMPRSS2 has presented biological functions in cancer, but the roles remain controversial and the mechanism remains unelucidated. Some chemicals have been reported to be inhibitors of TMPRSS2 and also demonstrated other pharmacological properties. At this stage, it is important to discover more new compounds targeting TMPRSS2, especially from natural products, for the prevention and treatment of COVID-19 infection.Methods: We analyzed the correlation between TMPRSS2 expression, methylation level, overall survival rate, clinical parameters, biological process, and determined the correlation between TMPRSS2 and tumor-infiltrating lymphocytes in the tumor and adjacent normal tissue of adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) respectively by using various types of bioinformatics approaches. Moreover, we determined the correlation between TMPRSS2 protein level and the prognosis of LUAD and LUSC cohorts by immunohistochemistry assay. Furthermore, the cancer immunome atlas (TCIA) database was used to predict the relationship between the expression of TMPRSS2 and response to programmed cell death protein 1 (PD-1) blocker immunotherapy in lung cancer patients. Finally, the putative binding site of ginsenosides bound to TMPRSS2 protein was built from homology modeling to screen high-potency TMPRSS2 inhibitors.Results: We found that TMPRSS2 recruits various types of immunocytes, including CD8+, CD4+ T cells, B cells and DCs both in LUAD and LUSC patients, and the correlation between TMPRSS2 expression and CD8+ and CD4+ T cells are stronger in LUAD rather than in LUSC, but excludes macrophages and neutrophils in LUAD patient cohorts. These might be the reason that higher mRNA and protein levels of TMPRSS2 are associated with better prognosis in LUAD cohorts rather than in LUSC cohorts. Furthermore, we found that TMPRSS2 was positively correlated with the prognosis in patient nonresponse to anti-PD-1 therapy. Therefore, we made an inference that increasing the expression level of TMPRSS2 may improve the anti-PD-1 immunotherapy efficacy. Finally, five ginsenosides candidates with high inhibition potency were screened from the natural chemical library to be used as TMPRSS2 inhibitors.Conclusion: All these may imply that TMPRSS2 might be a novel prognostic biomarker and serve as a potential immunomodulator target of immunotherapy combination therapies in LUAD patients nonresponse to anti-PD-1 therapy. Also, these findings may suggest we should pay more attention to LUAD patients, especially those infected with COVID-19, who should avoid medicating TMPRSS2 inhibitors, such as ginsenosides to gain prophylactic and therapeutic benefits against COVID-19.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Gao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixue Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiang Liu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shiyu Du
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
- School of Computer Science, China University of Petroleum (East China), Qingdao, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| |
Collapse
|
10
|
Dexmedetomidine provides type-specific tumour suppression without tumour-enhancing effects in syngeneic murine models. Br J Anaesth 2023; 130:142-153. [PMID: 36494207 DOI: 10.1016/j.bja.2022.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dexmedetomidine is a widely used anaesthetic adjuvant for cancer resection surgeries. However, recent reports suggest that it may promote tumour growth or metastasis, so it is essential to clarify its tumour-related effects. METHODS Seven syngeneic murine tumour models were used to assess the impact of dexmedetomidine on primary tumour growth, spontaneous tumour metastasis, and surgical resection-associated metastasis. Cancer cell proliferation and apoptosis experiments, terminal deoxynucleotidyl transferase dUTP nick-end labelling assays, immune cell analysis, specific T-cell depletion experiments, and gene transcription analysis were conducted to identify the underlying mechanisms. RESULTS Dexmedetomidine did not affect growth of EO771 or 4T1 breast tumours, LAP0297 or LLC lung tumours, MCA205 fibrosarcoma, or their spontaneous lung metastases. It did not promote lung metastasis after breast cancer resection. Dexmedetomidine significantly suppressed MCA38 and CT26 colorectal tumour growth (P<0.01) and promoted apoptosis in MCA38 tumour tissues (P<0.05) without affecting proliferation and apoptosis of MCA38 tumour cells in vitro, suggesting indirect anti-tumour effects. Dexmedetomidine increased the proportions of intratumour CD4+ T (P<0.01), CD8+ T (P<0.001), and natural killer cells (P<0.01), and it upregulated transcription of the cytotoxicity-related genes Infg, Tnfa, and Cxcl9 (P<0.05) in MCA38 tumours. Either CD8+ or CD4+ T-cell depletion reversed the anti-tumour effects of dexmedetomidine on MCA38 tumours (P<0.05). CONCLUSIONS Dexmedetomidine conferred colorectal tumour-type specific suppression by modulation of tumour CD4+ and CD8+ T cells without tumour-enhancing effects.
Collapse
|
11
|
Gao X, Wang XL. Dexmedetomidine promotes ferroptotic cell death in gastric cancer via hsa_circ_0008035/miR-302a/E2F7 axis. Kaohsiung J Med Sci 2023; 39:390-403. [PMID: 36718915 DOI: 10.1002/kjm2.12650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/01/2023] Open
Abstract
Dexmedetomidine (DEX), a common anesthetic, has significant effects on the biological features of cancer cells. Although numerous studies have been published on the impact of DEX on the biological characteristics of GC cells, the mechanism remains unknown. This study aimed to explore the effect of DEX on the biological properties of GC cells. DEX suppressed the viability and increased the apoptosis of GC cells in vitro and inhibited tumor growth in vivo. Besides, DEX raised the levels of reactive oxygen species (ROS) and iron, but decreased the levels of glutathione (GSH), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in GC cells, which were abolished by Ferrostatin-1 (the inhibitor of ferroptosis) treatment. In addition, the level of circ0008035 and E2F7 were downregulated, but miR-302a level was upregulated in DEX-treated GC cells. Circ0008035 increased the expression of E2F2 by acting as a sponge for miR-302a. Circ0008035 inhibited DEX-induced ferroptotic cell death in GC cells, which was reversed by miR-302a overexpression or E2F7 reduction. Taken together, DEX mediated ferroptotic cell death in GC through regulating the circ0008035/miR-302a/E2F7 axis, suggesting a feasible therapy option for GC.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo, Ningbo, China
| | - Xiao-Liang Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
13
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
14
|
Cai Q, Liu G, Huang L, Guan Y, Wei H, Dou Z, Liu D, Hu Y, Gao M. The Role of Dexmedetomidine in Tumor-Progressive Factors in the Perioperative Period and Cancer Recurrence: A Narrative Review. Drug Des Devel Ther 2022; 16:2161-2175. [PMID: 35821701 PMCID: PMC9271281 DOI: 10.2147/dddt.s358042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/28/2022] [Indexed: 12/20/2022] Open
Abstract
Dexmedetomidine, a specific α2 adrenergic receptor agonist, is highly frequently used in the perioperatively for its favorable pharmacology, such as mitigating postoperative cognitive dysfunction. Increasing attention has been recently focused on the effect of whether dexmedetomidine influences cancer recurrence, which urges the discussion of the role of dexmedetomidine in tumor-progressive factors. The pharmacologic characteristics of dexmedetomidine, the tumor-progressive factors in the perioperative period, and the relationships between dexmedetomidine and tumor-progressive factors were described in this review. Available evidence suggests that dexmedetomidine could reduce the degree of immune function suppression, such as keeping the number of CD3+ cells, NK cells, CD4+/CD8+ ratio, and Th1/Th2 ratio stable and decreasing the level of proinflammatory cytokine (interleukin 6 and tumor necrosis factor-alpha) during cancer operations. However, dexmedetomidine exhibits different roles in cell biological behavior depending on cancer cell types. The conclusions on whether dexmedetomidine would influence cancer recurrence could not be currently drawn for the lack of strong clinical evidence. Therefore, this is still a new area that needs further exploration.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
| | - Guoqing Liu
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Linsheng Huang
- Department of Hepatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Zhiqian Dou
- Department of Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Dexi Liu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Yang Hu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of China
- Yang Hu, Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, People’s Republic of China, Tel +86-13995744850, Email
| | - Meiling Gao
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
- Correspondence: Meiling Gao, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China, Tel +86-15971849819, Email
| |
Collapse
|
15
|
Bulgakova SV, Treneva EV, Zakharova NO. Beta coronaviruses and human endocrine system: new data (review of literature). Klin Lab Diagn 2022; 67:140-146. [PMID: 35320628 DOI: 10.51620/0869-2084-2022-67-3-140-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new dangerous respiratory disease COVID-19 was first reported in China in December 2019, the pathogen SARS-Coronavirus 2 (SARS-CoV-2), belonging to the beta coronavirus genus, which, in addition to SARS-CoV-2, includes SARS-CoV-1 and MERS-CoV. The genome of SARS-CoV-2 is almost 80% similar to SARS-CoV-1 and 50% to MERS-CoV. The mechanisms of infection of SARS-CoV-1 and SARS-CoV-2 are also similar and occur through the binding of the virus to the type 2 angiotensin-converting enzyme protein (ACE2), which is widely represented in the human body with predominant expression in endocrine tissues. In this connection, SARS-CoV-1 and SARS-CoV-2 affect the organs of the endocrine system, causing damage and hormonal changes that affect the prognosis of the course of COVID-19. This literature review is devoted to the analysis of changes in the organs of the endocrine system that occur during infection with SARS-CoV-1 and SARS-CoV-2, as well as the potential effect of hormones on susceptibility to SARS-CoV-2.
Collapse
|
16
|
Shen Q, Xia Y, Yang L, Wang B, Peng J. Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813521. [PMID: 35309842 PMCID: PMC8926537 DOI: 10.1155/2022/2813521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a significant cause of human death in the world. Recently, it is found that midazolam can modulate miRs to participate in HCC progression. This research project was designed to elucidate the impacts of midazolam and miR-217 on HCC cell metastasis and apoptosis. Methods Human HCC cell strains (Hep3B and SK-HEP-1) were selected and intervened by midazolam at different concentrations in our research. miR-217-inhibitor intervened in the two HCC cell strains to observe the alterations of cell migration, invasiveness, and apoptosis. The miR-217 level in HCC cells was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results As midazolam concentration was elevated, Hep3B and SK-HEP-1 viabilities were more obviously suppressed. The 10 μg/mL concentration was selected for analysis since Hep3B and SK-HEP-1 had an IC50 of 10.57 μg/mL and 9.35 μg/m, respectively. The qRT-PCR results showed the decreased of miR-217 in HCC cells, which was enhanced notably by midazolam intervention. Compared with the blank group, the invasiveness and migration (Transwell assay) of miR-217-inhibitor-transfected HCC cells were distinctly enhanced and the apoptosis rate (flow cytometry) was noticeably reduced. Conclusion Midazolam can upregulate miR-217 in HCC cells, thus inhibiting HCC cell metastasis and apoptosis.
Collapse
Affiliation(s)
- Qian Shen
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Yanqiong Xia
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Leilei Yang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Bo Wang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Jian Peng
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| |
Collapse
|
17
|
Shi Y, Luo J, Wang X, Zhang Y, Zhu H, Su D, Yu W, Tian J. Emerging Trends on the Correlation Between Neurotransmitters and Tumor Progression in the Last 20 Years: A Bibliometric Analysis via CiteSpace. Front Oncol 2022; 12:800499. [PMID: 35280754 PMCID: PMC8907850 DOI: 10.3389/fonc.2022.800499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Background Bibliometric analysis is used to gain a systematic understanding of developments in the correlation between neurotransmitters and tumor progression in research hotspots over the past 20 years. Methods Relevant publications from the Web of Science Core Collection (WoSCC) were downloaded on August 1, 2021. Acquired data were then analyzed using the Online Analysis Platform of Literature Metrology (http://biblimetric.com) and the CiteSpace software to analyze and predict trends and hot spots in this field. Results A total of 1310 publications on neurotransmitters and tumor progression were identified, and 1285 qualified records were included in the final analysis. The country leading the research was the United States of America. The University of Buenos Aires featured the highest number of publications among all institutions. Co-citation cluster labels revealed the characteristics of 10 main clusters: beta-adrenergic receptors (β-AR), glutamate, neurotransmitters, serotonin, drd2, histamine, glycine, interleukin-2, neurokinin receptor-1, and nicotinic acetylcholine receptors (AchRs). Keywords and references burst detection indicated that apart from β-AR, dopamine receptor and cancer types like gastric cancer and glioblastoma are the newly emerging research hotspots. Conclusions This study analyzed 1285 publications and 39677 references covering the topic of neurotransmitters and tumor progression and showed that while β-AR has always been a hot topic in this field, dopamine receptor is an emerging target for this research field, and gastric cancer and glioblastoma are the top two tumors that have garnered increasing attention and have become the focal point of recent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Parmar HS, Nayak A, Kataria S, Tripathi V, Jaiswal P, Gavel PK, Jha HC, Bhagwat S, Dixit AK, Lukashevich V, Das AK, Sharma R. Restructuring the ONYX-015 adenovirus by using spike protein genes from SARS-CoV-2 and MERS-CoV: Possible implications in breast cancer treatment. Med Hypotheses 2022; 159:110750. [PMID: 35002022 PMCID: PMC8723760 DOI: 10.1016/j.mehy.2021.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore 452001, M.P., India
| | - Shreya Kataria
- School of Biotechnology, Devi Ahilya University, Indore 452001, M.P., India
| | - Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore 452001, M.P., India
| | - Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore 452001, M.P., India
| | | | - Hem Chandra Jha
- Department of Bioscience and Bioengineering, IIT, Simrol, Indore, India
| | - Shivani Bhagwat
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata, West Bengal, India
| | - Amit Kumar Dixit
- Central Council for Research in Ayurvedic Sciences, Kolkata, West Bengal, India
| | - Vladimir Lukashevich
- Institute of Physiology of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Apurba Kumar Das
- Department of Bioscience and Bioengineering, IIT, Simrol, Indore, India
| | - Rajesh Sharma
- School of Pharmacy, Devi Ahilya University, Indore 452001, M.P., India
| |
Collapse
|
19
|
Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nat Rev Urol 2022; 19:116-127. [PMID: 34837081 PMCID: PMC8622117 DOI: 10.1038/s41585-021-00542-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Although many studies have focused on SARS-CoV-2 infection in the lungs, comparatively little is known about the potential effects of the virus on male fertility. SARS-CoV-2 infection of target cells requires the presence of furin, angiotensin-converting enzyme 2 (ACE2) receptors, and transmembrane protease serine 2 (TMPRSS2). Thus, cells in the body that express these proteins might be highly susceptible to viral entry and downstream effects. Currently, reports regarding the expression of the viral entry proteins in the testes are conflicting; however, other members of the SARS-CoV family of viruses - such as SARS-CoV - have been suspected to cause testicular dysfunction and/or orchitis. SARS-CoV-2, which displays many similarities to SARS-CoV, could potentially cause similar adverse effects. Commonalities between SARS family members, taken in combination with sparse reports of testicular discomfort and altered hormone levels in patients with SARS-CoV-2, might indicate possible testicular dysfunction. Thus, SARS-CoV-2 infection has the potential for effects on testis somatic and germline cells and experimental approaches might be required to help identify potential short-term and long-term effects of SARS-CoV-2 on male fertility.
Collapse
|
20
|
Liu L, Qin JF, Zuo MZ, Zhou Q. Multi-omics of the expression and clinical outcomes of TMPRSS2 in human various cancers: A potential therapeutic target for COVID-19. J Cell Mol Med 2021; 26:709-724. [PMID: 34951103 PMCID: PMC8817140 DOI: 10.1111/jcmm.17090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID‐19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS‐CoV‐2 infection during the COVID‐19 outbreak.
Collapse
Affiliation(s)
- Li Liu
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital, Yichang, China
| | - Ju-Fang Qin
- Department of Gynecology and Obstetrics, The People's Hospital, China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Man-Zhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital, China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Quan Zhou
- Department of Gynecology and Obstetrics, The People's Hospital, China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| |
Collapse
|
21
|
Murugan AK, Alzahrani AS. SARS-CoV-2: Emerging Role in the Pathogenesis of Various Thyroid Diseases. J Inflamm Res 2021; 14:6191-6221. [PMID: 34853527 PMCID: PMC8628126 DOI: 10.2147/jir.s332705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is asymptomatic in most cases, but it is impartible and fatal in fragile and elderly people. Heretofore, more than four million people succumbed to COVID-19, while it spreads to every part of the globe. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) induces various dysfunctions in many vital organs including the thyroid by utilizing ACE2 as a receptor for cellular entry. Emerging reports clearly show the involvement of SARS-CoV-2 in diverse thyroid disorders. Thus, this review article aims to review comprehensively all the recent developments in SARS-CoV-2-induced pathogenesis of thyroid diseases. The review briefly summarizes the recent key findings on the mechanism of SARS-CoV-2 infection, the role of ACE2 receptor in viral entry, SARS-CoV-2-activated molecular signaling in host cells, ACE2 expression in the thyroid, cytokine storm, and its vital role in thyroid dysfunction and long-COVID in relation to thyroid and autoimmunity. Further, it extensively discusses rapidly evolving knowledge on the potential part of SARS-CoV-2 in emerging various thyroid dysfunctions during and post-COVID-19 conditions which include subacute thyroiditis, Graves' diseases, Hashimoto’s thyroiditis, thyrotoxicosis, and other recent advances in further discerning the implications of this virus within thyroid dysfunction. Unraveling the pathophysiology of SARS-CoV-2-triggered thyroid dysfunctions may aid pertinent therapeutic options and management of these patients in both during and post-COVID-19 scenarios.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ali S Alzahrani
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia.,Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
22
|
Wen G, Xin N. Dexmetomidine promotes the activity of breast cancer cells through miR-199a/HIF-1α axis. Transl Cancer Res 2021; 10:4817-4828. [PMID: 35116334 PMCID: PMC8797324 DOI: 10.21037/tcr-21-1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Breast cancer, as one of the most common malignant tumors in women, is still a great threat to women all over the world. Dexmetomidine (DMED) is a highly selective α2-adrenergic receptor agonist, which has attracted much attention in recent years. This study aimed to clarify the potential mechanism of DMED in regulating the activity of breast cancer cells. METHODS Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with DMED. The levels of miR-199a and HIF-1α mRNA were detected using quantitative real-time polymerase chain reaction (QRT-PCR); the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and transwell assays were applied to monitor the activity of breast cancer cells; the apoptosis of breast cancer cells was detected using the caspase-3 activity assay and flow cytometry; binding of miR-199a and HIF-1α was assessed using double luciferase reporter gene assay, and western blot was employed to monitor the level of HIF-1α in cells. RESULTS The cytotoxicity and apoptosis of MCF-7 and MDA-MB-231 cells was inhibited by DMED. It also downregulated the expression of miR-199a in breast cancer cells and enhanced the downregulation of miR-199a to promote the activity of breast cancer cells and inhibit apoptosis. Also, miR-199a targeted HIF-1α. Further functional experiments confirmed that DMED promoted the progression of breast cancer through the miR-199a/HIF-1α axis. CONCLUSIONS DMED promotes the activity of breast cancer cells through miR-199a/HIF-1αaxis. This can provide some reference for DMED in the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Gang Wen
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Naixing Xin
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
23
|
Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GES. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021; 11:666987. [PMID: 34568081 PMCID: PMC8455954 DOI: 10.3389/fcimb.2021.666987] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), which leads to pulmonary manifestations like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition, COVID-19 may cause extra-pulmonary manifestation such as testicular injury. Both high and low levels of testosterone could affect the severity of COVID-19. Herein, there is substantial controversy regarding the potential role of testosterone in SARS-CoV-2 infection and COVID-19 severity. Therefore, the present study aimed to review and elucidate the assorted view of preponderance regarding the beneficial and harmful effects of testosterone in COVID-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. All published articles related to the role of testosterone and COVID-19 were included in this mini-review. The beneficial effects of testosterone in COVID-19 are through inhibition of pro-inflammatory cytokines, augmentation of anti-inflammatory cytokines, modulation of the immune response, attenuation of oxidative stress, and endothelial dysfunction. However, its harmful effects in COVID-19 are due to augmentation of transmembrane protease serine 2 (TMPRSS2), which is essential for cleaving and activating SARS-CoV-2 spike protein during acute SARS-CoV-2 infection. Most published studies illustrated that low testosterone levels are linked to COVID-19 severity. A low testosterone level in COVID-19 is mainly due to testicular injury, the primary source of testosterone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Hani Faidah
- Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
24
|
Piticchio T, Le Moli R, Tumino D, Frasca F. Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic-A comprehensive review. J Endocrinol Invest 2021; 44:1553-1570. [PMID: 33583003 PMCID: PMC7882054 DOI: 10.1007/s40618-020-01486-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND A new harmful respiratory disease, called COVID-19 emerged in China in December 2019 due to the infection of a novel coronavirus, called SARS-Coronavirus 2 (SARS-CoV-2), which belongs to the betacoronavirus genus, including SARS-CoV-1 and MERS-CoV. SARS-CoV-2 shares almost 80% of the genome with SARS-CoV-1 and 50% with MERS-CoV. Moreover, SARS-CoV-2 proteins share a high degree of homology (approximately 95%) with SARS-CoV-1 proteins. Hence, the mechanisms of SARS-Cov-1 and SARS-Cov-2 infection are similar and occur via binding to ACE2 protein, which is widely distributed in the human body, with a predominant expression in endocrine tissues including testis, thyroid, adrenal and pituitary. PURPOSE On the basis of expression pattern of the ACE2 protein among different tissues, similarity between SARS-Cov-1 and SARS-Cov-2 and the pathophysiology of COVID-19 disease, we aimed at discussing, after almost one-year pandemic, about the relationships between COVID-19 infection and the endocrine system. First, we discussed the potential effect of hormones on the susceptibility to COVID-19 infection; second, we examined the evidences regarding the effect of COVID-19 on the endocrine system. When data were available, a comparative discussion between SARS and COVID-19 effects was also performed. METHODS A comprehensive literature search within Pubmed was performed. This review has been conducted according to the PRISMA statements. RESULTS Among 450, 100 articles were selected. Tissue and vascular damages have been shown on thyroid, adrenal, testis and pituitary glands, with multiple alterations of endocrine function. CONCLUSION Hormones may affect patient susceptibility to COVID-19 infection but evidences regarding therapeutic implication of these findings are still missing. SARS and COVID-19 may affect endocrine glands and their dense vascularization, impairing endocrine system function. A possible damage of endocrine system in COVID-19 patients should be investigated in both COVID-19 acute phase and recovery to identify both early and late endocrine complications that may be important for patient's prognosis and well-being after COVID-19 infection.
Collapse
Affiliation(s)
- T Piticchio
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - R Le Moli
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - D Tumino
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - F Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy.
| |
Collapse
|
25
|
Jin H, Tang Y, Yang L, Peng X, Li B, Fan Q, Wei S, Yang S, Li X, Wu B, Huang M, Tang S, Liu J, Li H. Rab GTPases: Central Coordinators of Membrane Trafficking in Cancer. Front Cell Dev Biol 2021; 9:648384. [PMID: 34141705 PMCID: PMC8204108 DOI: 10.3389/fcell.2021.648384] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.
Collapse
Affiliation(s)
- Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qin Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Müller P, Maus H, Hammerschmidt SJ, Knaff P, Mailänder V, Schirmeister T, Kersten C. Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Curr Med Chem 2021; 29:635-665. [PMID: 34042026 DOI: 10.2174/0929867328666210526111318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023]
Abstract
Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since currently, there is no causative drug against this viral infection available, science is striving for new drugs and approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARS-CoV-2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.
Collapse
Affiliation(s)
- Patrick Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Philip Knaff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
27
|
Pironti G, Andersson DC, Lund LH. Mechanistic and Therapeutic Implications of Extracellular Vesicles as a Potential Link Between Covid-19 and Cardiovascular Disease Manifestations. Front Cell Dev Biol 2021; 9:640723. [PMID: 33644077 PMCID: PMC7905102 DOI: 10.3389/fcell.2021.640723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), which are cell released double layered membrane particles, have been found in every circulating body fluid, and provide a tool for conveying diverse information between cells, influencing both physiological and pathological conditions. Viruses can hijack the EVs secretory pathway to exit infected cells and use EVs endocytic routes to enter uninfected cells, suggesting that EVs and viruses can share common cell entry and biogenesis mechanisms. SARS-CoV-2 is responsible of the coronavirus disease 2019 (Covid-19), which may be accompanied by severe multi-organ manifestations. EVs may contribute to virus spreading via transfer of virus docking receptors such as CD9 and ACE2. Covid-19 is known to affect the renin angiotensin system (RAS), and could promote secretion of harmful EVs. In this scenario EVs might be linked to cardiovascular manifestations of the Covid-19 disease through unbalance in RAS. In contrast EVs derived from mesenchymal stem cells or cardiosphere derived cells, may promote cardiovascular function due to their beneficial effect on angiogenesis, fibrosis, contractility and immuno-modulation. In this article we assessed the potential impact of EVs in cardiovascular manifestations of Covid-19 and highlight potential strategies to control the extracellular signaling for future therapies.
Collapse
Affiliation(s)
- Gianluigi Pironti
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Heart, Vascular and Neurology Theme, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden.,Heart, Vascular and Neurology Theme, Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Parmar HS, Nayak A, Gavel PK, Jha HC, Bhagwat S, Sharma R. Cross Talk between COVID-19 and Breast Cancer. Curr Cancer Drug Targets 2021; 21:575-600. [PMID: 33593260 DOI: 10.2174/1568009621666210216102236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
Cancer patients are more susceptible to COVID-19; however, the prevalence of COVID-19 in different types of cancer is still inconsistent and inconclusive. Here, we delineate the intricate relationship between breast cancer and COVID-19. Breast cancer and COVID-19 share the involvement of common comorbidities, hormonal signalling pathways, gender differences, rennin- angiotensin system (RAS), angiotensin-converting enzyme-2 (ACE-2), transmembrane protease serine 2 (TMPRSS2) and dipeptidyl peptidase-IV (DPP-IV). We also shed light on the possible effects of therapeutic modalities of COVID-19 on breast cancer outcomes. Briefly, we conclude that breast cancer patients are more susceptible to COVID-19 in comparison with their normal counterparts. Women are more resistant to the occurrence and severity of COVID-19. Increased expressions of ACE2 and TMPRSS2 are correlated with occurrence and severity of COVID-19, but higher expression of ACE2 and lower expression of TMPRSS2 are prognostic markers for overall disease free survival in breast cancer. The ACE2 inhibitors and ibuprofen therapies for COVID-19 treatment may aggravate the clinical condition of breast cancer patients through chemo-resistance and metastasis. Most of the available therapeutic modalities for COVID-19 were also found to exert positive effects on breast cancer outcomes. Besides drugs in clinical trend, TMPRSS2 inhibitors, estrogen supplementation, androgen deprivation and DPP-IV inhibitors may also be used to treat breast cancer patients infected with SARS-CoV-2. However, drug-drug interactions suggest that some of the drugs used for the treatment of COVID-19 may modulate the drug metabolism of anticancer therapies which may lead to adverse drug reaction events.
Collapse
Affiliation(s)
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Pramod Kumar Gavel
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | - Hem Chandra Jha
- Department of Bioscience and Bioengineering, IIT, Indore, Simrol, Indore, M.P., India
| | - Shivani Bhagwat
- Suraksha Diagnostics Pvt. Ltd., Newtown, Rajarhat, Kolkata-West Bengal, India
| | - Rajesh Sharma
- School of Pharmacy, Devi Ahilya University, Indore-452001., M.P., India
| |
Collapse
|
29
|
Gao Y, Raj JU. Extracellular Vesicles as Unique Signaling Messengers: Role in Lung Diseases. Compr Physiol 2020; 11:1351-1369. [PMID: 33294981 DOI: 10.1002/cphy.c200006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed extracellular particles carrying rich cargo such as proteins, lipids, and microRNAs with distinct characteristics of their parental cells. EVs are emerging as an important form of cellular communication with the ability to selectively deliver a kit of directional instructions to nearby or distant cells to modulate their functions and phenotypes. According to their biogenesis, EVs can be divided into two groups: those of endocytic origin are called exosomes and those derived from outward budding of the plasma membrane are called microvesicles (also known as ectosomes or microparticles). Under physiological conditions, EVs are actively involved in maintenance of pulmonary hemostasis. However, EVs can contribute to the pathogenesis of diseases such as chronic obstructive pulmonary disease, asthma, acute lung injury/acute respiratory distress syndrome, interstitial lung disease, and pulmonary arterial hypertension. EVs, especially those derived from mesenchymal/stromal stem cells, can also be beneficial and can curb the development of lung diseases. Novel technologies are continuously being developed to minimize the undesirable effects of EVs and also to engineer EVs so that they may have beneficial effects and can be used as therapeutic agents in lung diseases. © 2021 American Physiological Society. Compr Physiol 11:1351-1369, 2021.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - J Usha Raj
- Department of Pediatrics, College of Medicine at Chicago, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
30
|
Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine Significance of SARS-CoV-2's Reliance on ACE2. Endocrinology 2020; 161:5870330. [PMID: 32652001 PMCID: PMC7454499 DOI: 10.1210/endocr/bqaa108] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
The current COVID-19 pandemic is the most disruptive event in the past 50 years, with a global impact on health care and world economies. It is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a coronavirus that uses angiotensin-converting enzyme 2 (ACE2) as an entry point to the cells. ACE2 is a transmembrane carboxypeptidase and member of the renin-angiotensin system. This mini-review summarizes the main findings regarding ACE2 expression and function in endocrine tissues. We discuss rapidly evolving knowledge on the potential role of ACE2 and SARS coronaviruses in endocrinology and the development of diabetes mellitus, hypogonadism, and pituitary and thyroid diseases.
Collapse
Affiliation(s)
- Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, New
Orleans, Louisiana
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences
Center, New Orleans, Louisiana
- Southeast Louisiana Veterans Health Care Systems, New Orleans,
Louisiana
- Correspondence: Eric Lazartigues, PhD, Department of Pharmacology & Experimental Therapeutics,
Louisiana State University Health Sciences Center, New Orleans, LA 70112. E-mail:
| | - Mirza Muhammad Fahd Qadir
- Southeast Louisiana Veterans Health Care Systems, New Orleans,
Louisiana
- Division of Endocrinology & Metabolism, Department of Medicine, Tulane
University School of Medicine, New Orleans, Louisiana
| | - Franck Mauvais-Jarvis
- Southeast Louisiana Veterans Health Care Systems, New Orleans,
Louisiana
- Division of Endocrinology & Metabolism, Department of Medicine, Tulane
University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
31
|
Chi M, Shi X, Huo X, Wu X, Zhang P, Wang G. Erratum to dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1040. [PMID: 32953840 PMCID: PMC7475481 DOI: 10.21037/atm-2020-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[This corrects the article DOI: 10.21037/atm.2020.04.28.].
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing Huo
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China.,Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|