1
|
Yao Y, Ouyang Q, Wang S, Li K, Luo Q, Qiu L, Liu F, Tan L, Li Q, Ren B, Long P, Ye J, Zhong X. Incorporation of PD-1 blockade into induction chemotherapy improved tumor response in patients with locoregionally advanced nasopharyngeal carcinoma in a retrospective patient cohort. Oral Oncol 2024; 154:106867. [PMID: 38797001 DOI: 10.1016/j.oraloncology.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE To investigate the short-term efficacy and safety of induction chemotherapy (IC) combined with anti-PD-1 immunotherapy in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). METHODS A total of 217 patients diagnosed with LA-NPC at the First Affiliated Hospital of Nanchang University, including 67 who received IC combined with anti-PD-1 and 150 who received IC, were retrospectively enrolled. Efficacy was evaluated at the end of the IC cycles and one month after radiotherapy based on RECIST v1.1 criteria. Acute toxicities were graded based on the CTCAE v5.0 criteria. Quantitative variables were compared by unpaired t-tests, and categorical variables were evaluated by Fisher Freeman-Halton test or Pearson Chi-square test. RESULTS At the end of all induction therapy cycles, the objective response rate (ORR) of the IC + anti-PD-1 group was 88.1 % (59/67) as opposed to 70.0 % (105/150) in the IC group. Subgroup analysis showed that patients in both stage Ⅲ and ⅣA achieved a significant improvement in ORR with the inclusion of anti-PD-1 therapy. Patients with T3-4 or N2-3 category appeared to benefit more from anti-PD-1 compared to patients with T1-2 or N0-1 category. However, neither ORR nor the complete response (CR) rate was significantly different between the two treatment groups one month after the end of radiotherapy. In addition, the frequency of Grade 3-4 adverse events were also similar in both groups. CONCLUSIONS IC combined with anti-PD-1 immunotherapy significantly improved the ORR of LA-NPC patients after induction therapy compared to IC alone.
Collapse
Affiliation(s)
- Yangyang Yao
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Qingqing Ouyang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Songlin Wang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Ke Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Lingping Qiu
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Fenfen Liu
- Department of Gerontology, Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Lei Tan
- Ganzhou Cancer Hospital, Ganzhou 341000, China
| | - Qingqing Li
- Heyuan People's Hospital, Heyuan, Guangdong Province 517000, China
| | - Biao Ren
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Ping Long
- Department of Otorhinolaryngology, Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Xiaojun Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
2
|
Chen Z, Wang Z, Liu S, Zhang S, Zhou Y, Zhang R, Yang W. Nomograms based on multiparametric MRI radiomics integrated with clinical-radiological features for predicting the response to induction chemotherapy in nasopharyngeal carcinoma. Eur J Radiol 2024; 175:111438. [PMID: 38613869 DOI: 10.1016/j.ejrad.2024.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/27/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVE To establish nomograms integrating multiparametric MRI radiomics with clinical-radiological features to identify the responders and non-responders to induction chemotherapy (ICT) in nasopharyngeal carcinoma (NPC). METHODS We retrospectively analyzed the clinical and MRI data of 168 NPC patients between December 2015 and April 2022. We used 3D-Slicer to segment the regions of interest (ROIs) and the "Pyradiomic" package to extract radiomics features. We applied the least absolute shrinkage and selection operator regression to select radiomics features. We developed clinical-only, radiomics-only, and the combined clinical-radiomics nomograms using logistic regression analysis. The receiver operating characteristic curves, DeLong test, calibration, and decision curves were used to assess the discriminative performance of the models. The model was internally validated using 10-fold cross-validation. RESULTS A total of 14 optimal features were finally selected to develop a radiomic signature, with an AUC of 0.891 (95 % CI, 0.825-0.946) in the training cohort and 0.837 (95 % CI, 0.723-0.932) in the testing cohort. The nomogram based on the Rad-Score and clinical-radiological factors for evaluating tumor response to ICT yielded an AUC of 0.926 (95 % CI, 0.875-0.965) and 0.901 (95 % CI, 0.815-0.979) in the two cohorts, respectively. Decision curves demonstrated that the combined clinical-radiomics nomograms were clinically useful. CONCLUSION Nomograms integrating multiparametric MRI-based radiomics and clinical-radiological features could non-invasively discriminate ICT responders from non-responders in NPC patients.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Radiology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China; Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Zhuo Wang
- Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shili Liu
- Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shaoru Zhang
- Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yunshu Zhou
- Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ruodi Zhang
- Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Wenjun Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
3
|
Yip PL, You R, Chen MY, Chua MLK. Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders. Cancers (Basel) 2024; 16:383. [PMID: 38254872 PMCID: PMC10814653 DOI: 10.3390/cancers16020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is the primary treatment modality for non-metastatic nasopharyngeal carcinoma (NPC) across all TN-stages. Locoregional control rates have been impressive even from the 2D radiotherapy (RT) era, except when the ability to deliver optimal dose coverage to the tumor is compromised. However, short- and long-term complications following head and neck RT are potentially debilitating, and thus, there has been much research investigating technological advances in RT delivery over the past decades, with the primary goal of limiting normal tissue damage. On this note, with a plateau in gains of therapeutic ratio by modern RT techniques, future advances have to be focused on individualization of RT, both in terms of dose prescription and the delineation of target volumes. In this review, we analyzed the guidelines and evidence related to contouring methods, and dose prescription for early and locoregionally advanced (LA-) NPC. Next, with the preference for induction chemotherapy (IC) in patients with LA-NPC, we assessed the evidence concerning radiotherapy adaptations guided by IC response, as well as functional imaging and contour changes during treatment. Finally, we discussed on RT individualization that is guided by EBV DNA assessment, and its importance in the era of combinatorial immune checkpoint blockade therapy with RT.
Collapse
Affiliation(s)
- Pui Lam Yip
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore;
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.Y.); (M.-Y.C.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.Y.); (M.-Y.C.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Cooperative Surgical Ward of Nasopharyngeal Carcinoma, Faifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Melvin L. K. Chua
- Division of Medical Sciences, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
4
|
Yan J, Zhou Q. LncRNA FOXP4-AS1 silencing inhibits metastasis and epithelial-mesenchymal transition in nasopharyngeal carcinoma via miR-136-5p/MAPK1. Anticancer Drugs 2023; 34:1104-1111. [PMID: 36961080 PMCID: PMC10569675 DOI: 10.1097/cad.0000000000001510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor caused by nasopharyngeal epithelium. Long non-coding RNAs (lncRNAs) and microRNAs have been identified as vital regulators in many tumors, including NPC. This study aimed to explain the biological roles and relevant mechanisms of lncRNA FOXP4-AS1 (FOXP4-AS1) in NPC. The levels of lncRNA FOXP4-AS1, miR-136-5p and MAPK1 in C666-1 and NP69 cells were analyzed by quantitative reverse transcription PCR (qRT-PCR). C666-1 cells viability, migration and invasion were evaluated by MTT and Transwell assay, respectively. The target gene of miR-136-5p predicted by TargetScan was further verified using dual luciferase reporter assay. Moreover, qRT-PCR and Western blot were adopted to assess epithelial-mesenchymal transition (EMT)-related gene expression, including E-cadherin and N-cadherin. We found that lncRNA FOXP4-AS1 was upregulated, while miR-136-5p was low-expressed in C666-1 cells, as opposed to NP69. Knockdown of FOXP4-AS1 notably suppressed C666-1 cell growth, inhibited cell migration and invasion. We also observed that E-cadherin expression was fortified and N-cadherin level was decreased in C666-1 cells after FOXP4-AS1-siRNA transfection. However, all these findings were eliminated in C666-1 cells after miR-136-5p inhibitor treatment. We also found miR-136-5p directly targeted MAPK1 and correlated inversely with MAPK1 expression in C666-1 cells. Further investigation suggested that MAPK1-plasmid reversed the effects of miR-136-5p mimic on cells viability, migration, invasion and EMT. To conclude, our data revealed that lncRNA FOXP4-AS1 knockdown alleviated metastasis and EMT in NPC via miR-136-5p/MAPK1, indicating that lncRNA FOXP4-AS1 may be a valuable therapeutic target for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Jin Yan
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qi Zhou
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Lim DWT, Kao HF, Suteja L, Li CH, Quah HS, Tan DSW, Tan SH, Tan EH, Tan WL, Lee JN, Wee FYT, Jain A, Goh BC, Chua MLK, Liao BC, Ng QS, Hong RL, Ang MK, Yeong JPS, Iyer NG. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma. Nat Commun 2023; 14:2781. [PMID: 37188668 PMCID: PMC10184620 DOI: 10.1038/s41467-023-38407-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Single-agent checkpoint inhibitor (CPI) activity in Epstein-Barr Virus (EBV) related nasopharyngeal carcinoma (NPC) is limited. Dual CPI shows increased activity in solid cancers. In this single-arm phase II trial (NCT03097939), 40 patients with recurrent/metastatic EBV-positive NPC who failed prior chemotherapy receive nivolumab 3 mg/kg every 2 weeks and ipilimumab 1 mg/kg every 6 weeks. Primary outcome of best overall response rate (BOR) and secondary outcomes (progression-free survival [PFS], clinical benefit rate, adverse events, duration of response, time to progression, overall survival [OS]) are reported. The BOR is 38% with median PFS and OS of 5.3 and 19.5 months, respectively. This regimen is well-tolerated and treatment-related adverse events requiring discontinuation are low. Biomarker analysis shows no correlation of outcomes to PD-L1 expression or tumor mutation burden. While the BOR does not meet pre-planned estimates, patients with low plasma EBV-DNA titre (<7800 IU/ml) trend to better response and PFS. Deep immunophenotyping of pre- and on-treatment tumor biopsies demonstrate early activation of the adaptive immune response, with T-cell cytotoxicity seen in responders prior to any clinically evident response. Immune-subpopulation profiling also identifies specific PD-1 and CTLA-4 expressing CD8 subpopulations that predict for response to combined immune checkpoint blockade in NPC.
Collapse
Affiliation(s)
- Darren Wan-Teck Lim
- National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| | - Hsiang-Fong Kao
- National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Lisda Suteja
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Constance H Li
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hong Sheng Quah
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Daniel Shao-Weng Tan
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Sze-Huey Tan
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Eng-Huat Tan
- National Cancer Centre Singapore, Singapore, Singapore
| | - Wan-Ling Tan
- National Cancer Centre Singapore, Singapore, Singapore
| | - Justina Nadia Lee
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | | | - Amit Jain
- National Cancer Centre Singapore, Singapore, Singapore
| | - Boon-Cher Goh
- National University Health System, Singapore, Singapore
| | - Melvin L K Chua
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Bin-Chi Liao
- National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Quan Sing Ng
- National Cancer Centre Singapore, Singapore, Singapore
| | - Ruey-Long Hong
- National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Mei-Kim Ang
- National Cancer Centre Singapore, Singapore, Singapore
| | - Joe Poh-Sheng Yeong
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
- Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
7
|
Mahajan S, Balcioglu HE, Oostvogels A, Dik WA, Chan KCA, Lo KW, Hui EP, Tsang A, Tong J, Lam WKJ, Wong K, Chan ATC, Ma BBY, Debets R. Frequency of Peripheral CD8+ T Cells Expressing Chemo-Attractant Receptors CCR1, 4 and 5 Increases in NPC Patients with EBV Clearance upon Radiotherapy. Cancers (Basel) 2023; 15:cancers15061887. [PMID: 36980772 PMCID: PMC10047204 DOI: 10.3390/cancers15061887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiotherapy (RT) is the standard-of-care for Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), where the post-RT clearance of plasma EBV DNA is prognostic. Currently, it is not known whether the post-RT clearance of plasma EBV DNA is related to the presence of circulating T-cell subsets. Blood samples from NPC patients were used to assess the frequency of T-cell subsets relating to differentiation, co-signaling and chemotaxis. Patients with undetectable versus detectable plasma EBV DNA levels post-RT were categorized as clearers vs. non-clearers. Clearers had a lower frequency of PD1+CD8+ T cells as well as CXCR3+CD8+ T cells during RT compared to non-clearers. Clearers exclusively showed a temporal increase in chemo-attractant receptors CCR1, 4 and/or 5, expressing CD8+ T cells upon RT. The increase in CCR-expressing CD8+ T cells was accompanied by a drop in naïve CD8+ T cells and an increase in OX40+CD8+ T cells. Upon stratifying these patients based on clinical outcome, the dynamics of CCR-expressing CD8+ T cells were in concordance with the non-recurrence of NPC. In a second cohort, non-recurrence associated with higher quantities of circulating CCL14 and CCL15. Collectively, our findings relate plasma EBV DNA clearance post-RT to T-cell chemotaxis, which requires validation in larger cohorts.
Collapse
Affiliation(s)
- Shweta Mahajan
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Astrid Oostvogels
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - K C Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joanna Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma. Eur Radiol 2023; 33:2171-2184. [PMID: 36355201 DOI: 10.1007/s00330-022-09201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To establish an effective dynamic nomogram combining magnetic resonance imaging (MRI) findings of primary tumor and regional lymph nodes with tumor stage for the pretreatment prediction of induction chemotherapy (IC) response in locoregionally advanced nasopharyngeal carcinoma (LANPC). METHODS A total of 498 LANPC patients (372 in the training and 126 in the validation cohort) with MRI information were enrolled. All patients were classified as "favorable responders" and "unfavorable responders" according to tumor response to IC. A nomogram for IC response was built based on the results of the logistic regression model. Also, the Cox regression analysis was used to identify the independent prognostic factors of disease-free survival (DFS). RESULTS After two cycles of IC, 340 patients were classified as "favorable responders" and 158 patients as "unfavorable responders." Calibration curves revealed satisfactory agreement between the predicted and the observed probabilities. The nomogram achieved an AUC of 0.855 (95% CI, 0.781-0.930) for predicting IC response, which outperformed TNM staging (AUC, 0.661; 95% CI 0.565-0.758) and the MRI feature-based model alone (AUC, 0.744; 95% CI 0.650-0.839) in the validation cohort. The nomogram was used to categorize patients into high- and low-response groups. An online dynamic model was built ( https://nomogram-for-icresponse-prediction.shinyapps.io/DynNomapp/ ) to facilitate the application of the nomogram. In the Cox multivariate analysis, clinical stage, tumor necrosis, EBV DNA levels, and cervical lymph node numbers were independently associated with DFS. CONCLUSIONS The comprehensive nomogram incorporating MRI features and tumor stage could assist physicians in predicting IC response and formulating personalized treatment strategies for LANPC patients. KEY POINTS • The nomogram can predict IC response in endemic LANPC. • The nomogram combining tumor stage with MRI-based tumor features showed very good predictive performance. • The nomogram was transformed into a web-based dynamic model to optimize clinical application.
Collapse
|
9
|
Jiang YT, Chen KH, Liang ZG, Yang J, Qu S, Li L, Zhu XD. Individualized number of induction chemotherapy cycles for locoregionally advanced nasopharyngeal carcinoma patients based on early tumor response. Cancer Med 2023; 12:4010-4022. [PMID: 36127746 PMCID: PMC9972137 DOI: 10.1002/cam4.5256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND The optimal number of cycles of induction chemotherapy (IC) in locoregionally advanced nasopharyngeal carcinoma (LANPC) is unclear. We aimed to combine the tumor response during IC and tumor stage to individualize the number of IC cycles. METHODS Totally, 498 LANPC patients who received IC plus CCRT between 2014 and 2018 were reviewed. Tumor response during IC was used to stratify patients with different risks. All patients were classified into those who received two cycles of IC and those who were treated with three cycles. Propensity score matching methods were performed to compare the treatment efficiency. RESULTS After two cycles of IC, 340/498 (68.3%) cases showed complete tumor response (CR)/partial response (PR) and 158 (31.7%) achieved stable disease (SD)/disease progression (PD). Unfavorable responders (SD/PD) exhibited poor survival outcomes. The three-cycle IC regimen was correlated with better OS and PFS than the two-cycle regimen for N2-3 patients in the CR/PR group. However, the use of different IC cycle strategies achieved similar survival outcomes for SD/PD or N0-1 patients. The incidences of acute toxicities were higher in the IC = 3 group. CONCLUSIONS Tumor response during IC could be a powerful predictor of LANPC and could be used to guide the individualized number of IC cycles. A three-cycle IC regimen seemed to be preferable for N2-3 patients who received CR/PR during IC. However, an additional cycle of IC could not benefit N0-1 or SD/PD patients, and the optimal treatment strategies for these patients require further consideration.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence- Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence- Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence- Tumor, Guangxi Medical University, Ministry of Education, Nanning, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
11
|
Lopez DC, Hoke AT, Rooper LM, London NR. Human Papillomavirus-Related Carcinomas of the Sinonasal Tract. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:291-302. [PMID: 36311560 PMCID: PMC9610077 DOI: 10.1007/s40136-022-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
Purpose of review The sinonasal tract is home to a uniquely heterogenous collection of malignant tumors. Human papillomavirus (HPV) has been detected in a number of these, but the virus' role as an oncogenic driver or coincidental finding remains unclear. We aim to highlight five sinonasal tumor types and synthesize the prevalence, etiologic role, and known clinicopathologic relevance of HPV in each. Recent findings The last decade has seen an expansion of investigation into HPV's oncogenic and prognostic significance within sinonasal malignancies. The sinonasal tract poses challenges to HPV detection where p16 lacks value as an accurate surrogate. A growing body of data supports a potentially favorable clinical profile for certain sinonasal HPV-positive lesions. Summary HPV represents a potential biologically and clinically relevant factor for some sinonasal malignancies. Definitive conclusions regarding HPV's role as a potential oncogenic agent require routine testing using validated methodologies, genomic interrogation, and large-scale prospective studies.
Collapse
Affiliation(s)
- Diana C. Lopez
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health; Bethesda, MD, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Austin T.K. Hoke
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health; Bethesda, MD, USA
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Lisa M. Rooper
- Department of Pathology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Nyall R. London
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health; Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| |
Collapse
|
12
|
Zhou X, Yuan G, Wu Y, Yan S, Jiang Q, Tang S. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci 2022; 79:357. [PMID: 35680727 PMCID: PMC11072984 DOI: 10.1007/s00018-022-04350-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation is currently used to be a mainstay of salvage therapy for nasopharyngeal carcinoma (NPC), however, development of radioresistance largely limits the radiation efficacy. Circular RNAs (circRNAs) have been shown to affect NPC progression, but its role in radioresistance remain unclear. METHODS The circular structure of circFIP1L1(circ_0069740) was verified by RNA-sequencing, RT-PCR based on gDNA or cDNA, RNase R treatment, and actinomycin D treatment. Cellular localization of circFIP1L1 and miR-1253 was detected by nucleoplasmic separation and/or fluorescence in situ hybridization. Expression of non-coding RNAs and mRNAs was detected by qRT-PCR, protein expression was detected by Western blot. Functionally, EdU, CCK-8, and colony formation experiments were employed to assess cell proliferation, flow cytometry was adopted to estimate cell cycle and apoptosis. Xenograft tumor growth was performed to detect the role of circFIP1L1 in vivo. Mechanistically, we examined the interplay between miR-1253 and circFIP1L1 or EIF4A3 through dual-luciferase reporter assay. The potential regulatory impacts of EIF4A3 on circFIP1L1 or PTEN was examined by RNA immunoprecipitation and RNA pull-down assays. RESULTS CircFIP1L1 overexpression and miR-1253 knockdown repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity. Mechanistically, circFIP1L1 was revealed to repress miR-1253 by binding to it, and EIF4A3 is a target gene of miR-1253. CircFIP1L1 regulated NPC proliferation, apoptosis, and radiosensitivity through miR-1253/EIF4A3. Moreover, we found that EIF4A3 bound to FIP1L1 mRNA transcript and induced circFIP1L1 formation, and thus stabilizing PTEN mRNA. CONCLUSION Our findings suggested that EIF4A3-induced circFIP1L1 repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity by miR-1253.
Collapse
Affiliation(s)
- Xiangqi Zhou
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Guangjin Yuan
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Yangjie Wu
- Oncology Department, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Sijia Yan
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Qingshan Jiang
- Otolaryngological Department, The First Affiliated Hospital, University of South China, No 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| | - Sanyuan Tang
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China.
| |
Collapse
|
13
|
Jiang YT, Chen KH, Liang ZG, Yang J, Wei SQ, Qu S, Li L, Zhu XD. A nomogram based on tumor response to induction chemotherapy may predict survival in locoregionally advanced nasopharyngeal carcinoma. Head Neck 2022; 44:1301-1312. [PMID: 35212066 DOI: 10.1002/hed.27020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To evaluate the clinical significance of tumor response to induction chemotherapy (IC) in locoregionally advanced nasopharyngeal carcinoma (LANPC) patients and further to develop a nomogram for predicting survival prognosis. METHODS A total of 498 patients with stage III-IVA NPC applying IC and concurrent chemotherapy were reviewed (training cohort, n = 376; validation cohort, n = 122). RESULTS Tumor response was an independent predictor for clinical outcomes. The nomogram included age, N stage, pretreatment Epstein-Barr virus DNA, lymphocyte-to-monocyte ratio, and tumor response achieved an ideal C-index of 0.703 (95% CI 0.655-0.751) in the validation cohort for predicting overall survival (OS), which outperformed than that of the TNM system alone (C-index, 0.670, 95% CI: 0.622-0.718). In addition, the nomogram could successfully classified patients into different risk groups. CONCLUSIONS We established and validated a precise and convenient nomogram based on tumor response for predicting the OS of LANPC patients.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jie Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Si-Qi Wei
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.,Department of Radiation Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Choi WYL, Lai JWY, Yu ELM, Choy YH, Lam YN, Wong RKY, Cheng ACK. Induction chemotherapy followed by radical chemoradiotherapy for patients with stage IV non-metastatic nasopharyngeal carcinoma: 11-Year Experience in a tertiary centre. J Med Imaging Radiat Oncol 2022; 66:853-865. [PMID: 35302281 DOI: 10.1111/1754-9485.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION T4 nasopharyngeal carcinoma (NPC) with close proximity to critical organs at risk (OARs) is usually underdosed during radiotherapy in order to respect radiation constraints. N3 disease has high risk of distant metastasis. Induction chemotherapy (IC) provides advantages of sparing of OARs during subsequent chemoradiotherapy (CCRT) and early eradication of micrometastasis. However, factors predicting successes of IC in this patient group are not well-studied. METHODS 104 T4 or N3 NPC patients were retrospectively reviewed during 2007-2018. They were planned for IC followed by CCRT using intensity-modulated radiotherapy. RESULTS In the whole group, five-year failure-free survival (FFS), locoregional failure-free survival (LRFS), distant failure-free survival (DFFS) and overall survival (OS) were 40.9%, 45.7%, 46.9% and 53.6% respectively. Isolated marginal failure rate was 5% (4/80) among patients with primary tumours located close to critical OARs. Pre-IC gross tumour volume primary (GTVp) total volume > 110 cm3 correlated with worse five-year LRFS (OR 6.37, P = 0.008), DFFS (OR 8.89, P = 0.003) and OS (OR 50.12, P < 0.001). In the T4 subgroup, IC improved D100% GTVp from 61.39 Gy to 64.71 Gy (P < 0.001) and V100% GTVp from 98.78% to 99.28% (P < 0.001). CONCLUSION Our study demonstrated improved dosimetric parameters and low isolated marginal failure rate. It supported the use of IC and CCRT for tumours located close to critical OARs. Further research is warranted to compare predictive roles of pre- and post-IC tumour volumes. For high-risk patients being defined by pre-IC volume or other prognostic models, treatment escalation should be considered.
Collapse
Affiliation(s)
| | | | - Ellen Lok Man Yu
- Clinical Research Centre, Kowloon West Cluster, Hospital Authority, Hong Kong, China
| | - Yiu Hei Choy
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Ying Na Lam
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | | | | |
Collapse
|
15
|
He B, Pan H, Zheng F, Chen S, Bie Q, Cao J, Zhao R, Liang J, Wei L, Zeng J, Li H, Cui X, Ding Y, Chao W, Xiang T, Cheng Y, Qiu G, Huang S, Tang L, Chang J, Luo D, Yang J, Zhang B. Long noncoding RNA LINC00930 promotes PFKFB3-mediated tumor glycolysis and cell proliferation in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:77. [PMID: 35209949 PMCID: PMC8867671 DOI: 10.1186/s13046-022-02282-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Background Metabolic reprogramming is a hallmark of cancer. However, the roles of long noncoding RNAs (lncRNAs) in cancer metabolism, especially glucose metabolism remain largely unknown. Results In this study, we identified and functionally characterized a novel metabolism-related lncRNA, LINC00930, which was upregulated and associated with tumorigenesis, lymphatic invasion, metastasis, and poor prognosis in nasopharyngeal carcinoma (NPC). Functionally, LINC00930 was required for increased glycolysis activity and cell proliferation in multiple NPC models in vitro and in vivo. Mechanistically, LINC00930 served as a scaffold to recruit the RBBP5 and GCN5 complex to the PFKFB3 promoter and increased H3K4 trimethylation and H3K9 acetylation levels in the PFKFB3 promoter region, which epigenetically transactivating PFKFB3, and thus promoting glycolytic flux and cell cycle progression. Clinically, targeting LINC00930 and PFKFB3 in combination with radiotherapy induced tumor regression. Conclusions Collectively, LINC00930 is mechanistically, functionally and clinically oncogenic in NPC. Targeting LINC00930 and its pathway may be meaningful for treating patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02282-9.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China. .,Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Hongli Pan
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.,Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengque Zheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Saiqiong Chen
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jinghe Cao
- Department of Reproductive Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li Wei
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jianchao Zeng
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hui Li
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Cui
- Department of Otolaryngology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yixuan Ding
- Department of Pathology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wei Chao
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Tiantian Xiang
- Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuhe Cheng
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gui Qiu
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shishun Huang
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Libo Tang
- Medical Science Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiansheng Chang
- Department of Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Experimental Center of Medical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Delan Luo
- Department of Gastroenterology, the First People's Hospital of Neijiang City, Neijiang, Sichuan, China
| | - Jie Yang
- Department of Hematology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
16
|
CW. Wong K, Johnson D, Hui EP, CT. Lam R, BY. Ma B, TC. Chan A. Opportunities and Challenges in Combining Immunotherapy and Radiotherapy in Head and Neck Cancers. Cancer Treat Rev 2022; 105:102361. [DOI: 10.1016/j.ctrv.2022.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
|
17
|
Jiang YT, Chen KH, Yang J, Liang ZG, Li L, Qu S, Zhu XD. Efficiency of high cumulative cisplatin dose in high- and low-risk patients with locoregionally advanced nasopharyngeal carcinoma. Cancer Med 2021; 11:715-727. [PMID: 34859600 PMCID: PMC8817101 DOI: 10.1002/cam4.4477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The optimal cumulative cisplatin dose (CCD) during radiation therapy for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients receiving induction chemotherapy (IC) plus CCRT remains controversial. This study aimed to explore the treatment efficiency of CCD for high-and low-risk patients with LA-NPC. METHODS Data from 472 LA-NPC patients diagnosed from 2014 to 2018 and treated with IC plus CCRT were reviewed. After propensity score matching, the therapeutic effects of a CCD > 200 and CCD ≤ 200 mg/m2 were evaluated comparatively. Five factors selected by multivariate analysis were incorporated to develop a nomogram. Subgroup analysis was conducted to explore the role of different CCDs in nomogram-defined high- and low-risk groups. Additionally, acute toxicities were evaluated comparatively between the high- and low-CCD groups. RESULTS After matching, there was no difference between different CCD groups for all patients in terms of 3-year overall survival (OS), distant metastasis-free survival (DMFS), locoregional recurrence-free survival (LRRFS), or progression-free survival (PFS). A nomogram was built by integrating pretreatment EBV DNA, clinical stage, and post-IC EBV DNA, post-IC primary gross tumor and lymph node volumes obtained a C-index of 0.674. The high-risk group determined by the nomogram had poorer 3-year PFS, OS, DMFS, and LRRFS than the low-risk group. A total of CCD > 200 mg/m2 increased the survival rates of 3-year PFS and DMFS (PFS: 72.5% vs. 54.4%, p = 0.012; DMFS: 81.9% vs. 61.5%, p = 0.014) in the high-risk group but not in the low-risk group. Moreover, the high CCD increased treatment-related acute toxicities. CONCLUSIONS A high CCD was associated with better 3-year PFS and DMFS rates than a low dose for high-risk patients but could not produce a survival benefit for low-risk patients.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jie Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
18
|
De Meulenaere A, Vermassen T, Creytens D, De Keukeleire S, Delahaye T, Deron P, Duprez F, Fung S, Pauwels P, Ferdinande L, Rottey S. An open-label, nonrandomized, phase Ib feasibility study of cusatuzumab in patients with nasopharyngeal carcinoma. Clin Transl Sci 2021; 14:2300-2313. [PMID: 34405542 PMCID: PMC8604223 DOI: 10.1111/cts.13089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
CD70 is expressed in up to 80% of nasopharyngeal carcinoma (NPC) cases. Cusatuzumab is a humanized anti‐CD70 monoclonal antibody, with dual action mechanisms: induction of cytotoxicity against CD70+ tumor cells and reduction in CD70‐CD27 signaling mediated immune evasion. The aim of this study was to assess the safety, pharmacokinetic profile, immunogenicity, pharmacodynamic profile, and preliminary activity of cusatuzumab in advanced NPC. Eleven patients were enrolled: one patient was assigned to arm A (adjuvant cusatuzumab monotherapy after curative chemoradiation), nine patients to arm B (cusatuzumab monotherapy; noncurative setting), and one patient to arm C (cusatuzumab + chemotherapy; noncurative setting); irrespective of tumoral CD70 expression. Both patients in arms A and C completed the study. All patients in arm B discontinued at an early stage. Five patients experienced grade greater than or equal to 3 nondrug related treatment‐emergent adverse events, most commonly fatigue and pneumonia (18%). An infusion‐related reaction was observed in two of 11 patients. Laboratory results showed no trend over time. Seven patients were eligible for response evaluation. No objective response to cusatuzumab was observed with stable disease being the best response. The current study indicates that the safety profile of cusatuzumab (with or without concurrent chemotherapy) is manageable in patients with advanced NPC, which is consistent with known safety profile. Limited activity of cusatuzumab in advanced NPC was observed. Combination therapies of cusatuzumab and other types of therapy should be explored for the improvement of activity in NPC and other CD70‐expressing malignancies.
Collapse
Affiliation(s)
| | - Tijl Vermassen
- Department of Medical Oncology, University Hospital Ghent, Ghent, Belgium.,Drug Research Unit Ghent, University Hospital Ghent, Ghent, Belgium.,Cancer Research Unit Ghent (CRIG), Ghent, Belgium
| | - David Creytens
- Cancer Research Unit Ghent (CRIG), Ghent, Belgium.,Department of Pathology, University Hospital Ghent, Ghent, Belgium
| | | | | | - Philippe Deron
- Department Of Head and Neck Surgery, University Hospital Ghent, Ghent, Belgium
| | - Fréderic Duprez
- Department of Radiation Oncology, University Hospital Ghent, Ghent, Belgium
| | - Samson Fung
- argenx B.V., Ghent, Belgium.,Fung Consulting Healthcare and Life Sciences, Eching, Germany
| | - Patrick Pauwels
- Centre for Oncological Research (CORE), University of Antwerp, and University Hospital Antwerp, Edegem, Belgium
| | - Liesbeth Ferdinande
- Cancer Research Unit Ghent (CRIG), Ghent, Belgium.,Department of Pathology, University Hospital Ghent, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, University Hospital Ghent, Ghent, Belgium.,Drug Research Unit Ghent, University Hospital Ghent, Ghent, Belgium.,Cancer Research Unit Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
19
|
Jiang YT, Chen KH, Yang J, Liang ZG, Qu S, Li L, Zhu XD. Establishment of a Prognostic Nomogram for Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Incorporating TNM Stage, Post-Induction Chemotherapy Tumor Volume and Epstein-Barr Virus DNA Load. Front Oncol 2021; 11:683475. [PMID: 34222003 PMCID: PMC8242239 DOI: 10.3389/fonc.2021.683475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/27/2021] [Indexed: 12/08/2022] Open
Abstract
Objectives To establish and validate an effective nomogram to predict clinical outcomes for patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Materials and Methods The clinicopathological parameters and follow-up information of 402 locoregionally advanced NPC patients (training cohort, n = 302; validation cohort, n = 100) were retrospectively enrolled. The nomogram was built with the important prognostic variables identified by Cox regression analysis. Overall survival (OS) and progression-free survival (PFS) were the primary and secondary endpoints, respectively. The predictive power and clinical utility of the nomogram were assessed using the Harrell concordance index (C-index), calibration curve, and decision curve analysis. We compared the eighth staging system model with the nomogram to analyze whether the model could improve the accuracy of prognosis Results Epstein–Barr virus (EBV) DNA load, the gross tumor volume (GTVnx), and cervical lymph node tumor volume (GTVnd) after induction chemotherapy were the independent predictors of OS and PFS. The calibration curves indicated superb agreement between the nomogram-predicted probabilities and observed actual probabilities of survival. The C-index and area under the receiver operator characteristic curve (AUC) of the nomogram integrating these significant factors and N stage, and TNM stage were higher than those of the eighth TNM system alone. In addition, the decision curve analyses demonstrated the clinical value and higher overall net benefit of the nomogram. High-risk groups identified by the nomogram had significantly poorer OS and PFS than the low-risk group (p < 0.05). Conclusions The multidimensional nomogram incorporating TNM stage, EBV DNA load, and tumor volume after induction chemotherapy led to a more precise prognostic prediction and could be helpful for stratifying risk and guiding treatment decisions in locoregionally advanced NPC patients who have undergone induction chemotherapy and concurrent chemoradiation.
Collapse
Affiliation(s)
- Yu-Ting Jiang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kai-Hua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.,Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Mulder FJ, Klufah F, Janssen FME, Farshadpour F, Willems SM, de Bree R, zur Hausen A, van den Hout MFCM, Kremer B, Speel EJM. Presence of Human Papillomavirus and Epstein-Barr Virus, but Absence of Merkel Cell Polyomavirus, in Head and Neck Cancer of Non-Smokers and Non-Drinkers. Front Oncol 2021; 10:560434. [PMID: 33552950 PMCID: PMC7855709 DOI: 10.3389/fonc.2020.560434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Determine the presence and prognostic value of human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCPyV), and cell cycle proteins in head and neck squamous cell carcinoma (HNSCC) of non-smokers and non-drinkers (NSND). METHODS Clinical characteristics and tumors of 119 NSND with HNSCC were retrospectively collected and analyzed on tissue microarrays. RNAscope in situ hybridization (ISH) was used to screen for the presence of HPV and MCPyV mRNA. Immunohistochemistry was performed for expression of p16 as surrogate marker for HPV, Large T-antigen for MCPyV, and cell cycle proteins p53 and pRb. Positive virus results were confirmed with polymerase chain reaction. For EBV, EBV encoded RNA ISH was performed. Differences in 5-year survival between virus positive and negative tumors were determined by log rank analysis. RESULTS All oropharyngeal tumors (OPSCC) (n = 10) were HPV-positive, in addition to one oral (OSCC) and one nasopharyngeal tumor (NPSCC). The other three NPSCC were EBV-positive. MCPyV was not detected. Patients with HPV or EBV positive tumors did not have a significantly better 5-year disease free or overall survival. Over 70% of virus negative OSCC showed mutant-type p53 expression. CONCLUSION In this cohort, all OPSCC and NPSCC showed HPV or EBV presence. Besides one OSCC, all other oral (n = 94), hypopharyngeal (n = 1), and laryngeal (n = 9) tumors were HPV, EBV, and MCPyV negative. This argues against a central role of these viruses in the ethiopathogenesis of tumors outside the oro- and nasopharynx in NSND. So, for the majority of NSND with virus negative OSCC, more research is needed to understand the carcinogenic mechanisms in order to consider targeted therapeutic options.
Collapse
Affiliation(s)
- Frans J. Mulder
- Department of Otorhinolaryngology and Head & Neck Surgery, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Faisal Klufah
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Famke M. E. Janssen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pathology, University Medical Center Groningen, Groningen, Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mari F. C. M. van den Hout
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head & Neck Surgery, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ernst-Jan M. Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
21
|
Targeting the PD-1/ PD-L1 interaction in nasopharyngeal carcinoma. Oral Oncol 2021; 113:105127. [PMID: 33454551 DOI: 10.1016/j.oraloncology.2020.105127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022]
Abstract
Upregulation of the programmed cell death receptor-1 and ligand (PD-1/PD-L1) pathway is one of many possible mechanisms of immune-evasion relevant to Epstein-Barr virus (EBV)- associated nasopharyngeal cancer (NPC). The therapeutic targeting of the PD-1/ PD-L1 axis is an area of active research in NPC and at least 8 monoclonal or bi-specific antibodies targeting this axis are currently under clinical evaluation in some of the following clinical settings: (1) palliative treatment of recurrent and/or metastatic (R/M) disease; (2) radical treatment of locoregionally advanced disease in adjunct to conventional chemoradiotherapy; (3) local/ regional recurrence. PD-1 antibodies as monotherapy has been reported to yield an overall objective response in around 20-30% of patients with R/M NPC in single-armed phase II trials, and the predictive role of PD-L1 expression in NPC remains to be defined. As with other solid tumors, combinatorial strategies with cytotoxic chemotherapy, radiotherapy or other immunotherapeutic agents (such as other immune-checkpoint inhibitors, EBV-targeting cellular therapy and other immune-modulating agents) and vascular endothelial growth factor/receptor antibodies are actively being evaluated in clinical trials with single-armed or randomized designs. This article will review the scientific rationale of targeting the PD1/PD-L1 axis in NPC, and summarizes the latest trials involving these agents and predictive biomarkers of response to PD-1/PD-L1 antibodies in NPC.
Collapse
|
22
|
Role of nano-sensitizers in radiation therapy of metastatic tumors. Cancer Treat Res Commun 2021; 26:100303. [PMID: 33454575 DOI: 10.1016/j.ctarc.2021.100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Cancer metastasis remains the major cause of global cancer deaths. Radiation therapy remains one of the golden standards for cancer treatment. Nanomedicine based strategies have been designed and developed in order to improve the clinical outcomes of cancer therapy and diagnosis at molecular levels. Over the years, several researchers have shown their interest in using radiosensitizers made of high Z elements. Metal-based nanosystems also play a dual role by enhancing the synergistic effect of cell killing via various biological immune responses. This review summarizes the role of Nano-sensitizers in boosting radiation (ionizing/non-ionizing radiations) induced biological responses in treatment of metastatic cancer models.
Collapse
|
23
|
Proteomic approaches to investigate gammaherpesvirus biology and associated tumorigenesis. Adv Virus Res 2020; 109:201-254. [PMID: 33934828 DOI: 10.1016/bs.aivir.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are members of the gammaherpesvirus subfamily, a group of viruses whose infection is associated with multiple malignancies, including cancer. The primary host for these viruses is humans and, like all herpesviruses, infection with these pathogens is lifelong. Due to the persistence of gammaherpesvirus infection and the potential for cancer formation in infected individuals, there is a driving need to understand not only the biology of these viruses and how they remain undetected in host cells but also the mechanism(s) by which tumorigenesis occurs. One of the methods that has provided much insight into these processes is proteomics. Proteomics is the study of all the proteins that are encoded by a genome and allows for (i) identification of existing and novel proteins derived from a given genome, (ii) interrogation of protein-protein interactions within a system, and (iii) discovery of druggable targets for the treatment of malignancies. In this chapter, we explore how proteomics has contributed to our current understanding of gammaherpesvirus biology and their oncogenic processes, as well as the clinical applications of proteomics for the detection and treatment of gammaherpesvirus-associated cancers.
Collapse
|
24
|
Berns A, Ringborg U, Celis JE, Heitor M, Aaronson NK, Abou‐Zeid N, Adami H, Apostolidis K, Baumann M, Bardelli A, Bernards R, Brandberg Y, Caldas C, Calvo F, Dive C, Eggert A, Eggermont A, Espina C, Falkenburg F, Foucaud J, Hanahan D, Helbig U, Jönsson B, Kalager M, Karjalainen S, Kásler M, Kearns P, Kärre K, Lacombe D, de Lorenzo F, Meunier F, Nettekoven G, Oberst S, Nagy P, Philip T, Price R, Schüz J, Solary E, Strang P, Tabernero J, Voest E. Towards a cancer mission in Horizon Europe: recommendations. Mol Oncol 2020; 14:1589-1615. [PMID: 32749074 PMCID: PMC7400777 DOI: 10.1002/1878-0261.12763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research-care-prevention continuum has the potential to achieve in 2030 a 10-year cancer-specific survival for 75% of patients diagnosed in European Union (EU) member states with a well-developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high-quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science-driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC-like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long-term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans-border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence-based advice.
Collapse
|
25
|
Zheng H, Wu L, Wang X, Chen Q. Risk of Nasopharyngeal Carcinoma Associated with Single Nucleotide Polymorphisms in the MicroRNA Binding Site of SGK3. Genet Test Mol Biomarkers 2020; 24:508-519. [PMID: 32644852 DOI: 10.1089/gtmb.2019.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Serum/glucocorticoid regulated kinase is a serine/threonine kinase that is involved in regulating cell proliferation, apoptosis, the cell cycle, and ion channel function. The aim of this study was to analyze the relationship between single nucleotide polymorphisms (SNPs) in the microRNA (miRNA) binding site of the SGK3 gene and the risk of nasopharyngeal carcinoma (NPC). Methods: Three SGK3 loci, rs77572541, rs11994200, and rs78158330, were genotyped in 226 NPC patients and 226 healthy controls via Sanger sequencing. Quantitative real-time polymerase chain reaction was used to analyze levels of SGK3 messenger RNA (mRNA), hsa-miR-3529-5p, hsa-miR-379-5p, hsa-miR-498, hsa-miR-4320, and hsa-miR-590-3p. Western blot analysis was used to assess serum and glucocorticoid regulated kinase 3 (SGK3) protein expression. Results: SGK3 rs77572541 locus G allele carriers were 3.47 times more likely to develop NPC than carriers of the A allele (95% confidence interval [CI] = 1.98-6.09, p < 0.01). The SGK3 rs11994200 locus C allele was a major risk factor for NPC (odds ratio = 2.68, 95% CI = 1.63-4.39, p < 0.01). Similarly, carriers of the C allele of the SGK3 rs78158330 locus were 3.36 times more likely to develop NPC than those with the T allele (95% CI = 1.96-5.73, p < 0.01). The SGK3 protein was highly expressed in NPC. The SGK3 rs77572541 locus G allele is the target of hsa-miR-379-5p and hsa-miR-3529-5p, but the A allele is not. The SGK3 rs11994200 locus C allele was the target of hsa-miR-4320, and the G allele was the target of hsa-miR-498. The SGK3 rs78158330 locus T allele was the target of hsa-miR-590-3p. Hsa-miR-3529-5p, hsa-miR-379-5p, and hsa-miR-4320 were down-regulated in NPC tissues (p < 0.01), whereas hsa-miR-498 and hsa-miR-590-3p were highly expressed (p < 0.01). Conclusions: SNPs at the SGK3 loci rs77572541, rs11994200, and rs78158330 are significantly associated with the risk for NPC. These effects may be related to the influence of miRNAs on different alleles, but this needs to be verified both in vitro and in vivo.
Collapse
Affiliation(s)
- Huizhen Zheng
- Department of Otolaryngology, Wenzhou People's Hospital, Wenzhou, China
| | - Liping Wu
- Department of Otolaryngology, Huzhou Central Hospital, Huzhou, China
| | - Xiaodan Wang
- Department of Otolaryngology, The 72nd Army Hospital of the People's Liberation Army of China, Huzhou, China
| | - Qin Chen
- Department of Otolaryngology, Wenzhou Kean University, Wenzhou, China
| |
Collapse
|
26
|
Baloche V, Ferrand FR, Makowska A, Even C, Kontny U, Busson P. Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 2020; 24:545-558. [PMID: 32249657 DOI: 10.1080/14728222.2020.1751820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.
Collapse
Affiliation(s)
- Valentin Baloche
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| | | | - Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Even
- Département de cancérologie cervico-faciale, Gustave Roussy and université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Busson
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
27
|
Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastatic disease in head & neck oncology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:S1-S86. [PMID: 32469009 PMCID: PMC7263073 DOI: 10.14639/0392-100x-suppl.1-40-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The head and neck district represents one of the most frequent sites of cancer, and the percentage of metastases is very high in both loco-regional and distant areas. Prognosis refers to several factors: a) stage of disease; b) loco-regional relapses; c) distant metastasis. At diagnosis, distant metastases of head and neck cancers are present in about 10% of cases with an additional 20-30% developing metastases during the course of their disease. Diagnosis of distant metastases is associated with unfavorable prognosis, with a median survival of about 10 months. The aim of the present review is to provide an update on distant metastasis in head and neck oncology. Recent achievements in molecular profiling, interaction between neoplastic tissue and the tumor microenvironment, oligometastatic disease concepts, and the role of immunotherapy have all deeply changed the therapeutic approach and disease control. Firstly, we approach topics such as natural history, epidemiology of distant metastases and relevant pathological and radiological aspects. Focus is then placed on the most relevant clinical aspects; particular attention is reserved to tumours with distant metastasis and positive for EBV and HPV, and the oligometastatic concept. A substantial part of the review is dedicated to different therapeutic approaches. We highlight the role of immunotherapy and the potential effects of innovative technologies. Lastly, we present ethical and clinical perspectives related to frailty in oncological patients and emerging difficulties in sustainable socio-economical governance.
Collapse
Affiliation(s)
- Paolo Pisani
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Mario Airoldi
- Medical Oncology, Città della Salute e della Scienza, Torino, Italy
| | | | - Paolo Aluffi Valletti
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | | | - Marco Benazzo
- SC Otorinolaringoiatria, Fondazione IRCCS Policlinico “S. Matteo”, Università di Pavia, Italy
| | | | | | - Salvatore Cocuzza
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Andrea Colombo
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Laura della Vecchia
- Unit of Otorhinolaryngology General Hospital “Macchi”, ASST dei Settelaghi, Varese, Italy
| | - Nerina Denaro
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
| | | | - Danilo Galizia
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Massimiliano Garzaro
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Marco Krengli
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | - Giovanni Vittorio Lanza
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | | | - Maurizio Mancuso
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| | - Laura Masini
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
| | - Marco Carlo Merlano
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Marco Piemonte
- ENT Unit, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory Fondazione IRCCS Policlinico “S. Matteo”, Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Luca Prioglio
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | | | - Felice Scasso
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | - Agostino Serra
- University of Catania, Italy
- G.B. Morgagni Foundation, Catania, Italy
| | - Guido Valente
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Micol Zannetti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Angelo Zigliani
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| |
Collapse
|
28
|
Ellerin BE, Demandante CGN, Martins JT. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother 2020; 24:226-246. [PMID: 32192840 DOI: 10.1016/j.canrad.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
We report the case of an 84-year-old woman with poorly differentiated non-small cell carcinoma of the right parotid who presented with headache, was found to have a primary right parotid gland cancer as well as metastatic disease, and underwent palliative radiotherapy to the primary site. The patient received no chemotherapy or immunotherapy, but both the primary site and several non-irradiated foci in the lungs regressed or completely resolved. The patient remained free of disease for about one year before progression. The case is a rare instance of abscopal regression of metastatic disease in the absence of pharmacologic immunomodulation. A literature review surveys the history of the abscopal effect of radiation therapy, attempts to understand the mechanisms of its successes and failures, and points to new approaches that can inform and improve the outcomes of radioimmunotherapy.
Collapse
Affiliation(s)
| | | | - J T Martins
- UT Health HOPE Cancer Center, Tyler, TX 75701, USA
| |
Collapse
|
29
|
Gondhowiardjo SA, Adham M, Kodrat H, Tobing DL, Haryoga IM, Dwiyono AG, Kristian YA. Current Immune-Related Molecular Approach in Combating Nasopharyngeal Cancer. World J Oncol 2019; 10:157-161. [PMID: 31636788 PMCID: PMC6785271 DOI: 10.14740/wjon1214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal cancer is a cancer closely related to Epstein-Barr virus (EBV) infection. EBV protein has been shown to be related to various oncogenic development. Suppression of tumor suppressor genes, upregulating molecules to prevent immune attack, downregulating pro-apoptotic proteins, and stimulating local immune suppressive environment are among some roles that EBV proteins can exert on host cells. All those factors combined together with underlying genetic susceptibility of host cells further increase the chance of nasopharyngeal cancer development. Approach targeting those carcinogenesis pathways has been tested with marginal benefit. A newer approach boosting immune cells to increase recognition of tumor antigen and promoting cytotoxic T cell attack has shown promising clinical benefit. Further combination of those immunotherapies with other modality, in particular radiotherapy, has resulted in amplification of cancer killing.
Collapse
Affiliation(s)
- Soehartati A Gondhowiardjo
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of Radiotherapy Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| | - Marlinda Adham
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of ENT, Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| | | | - Henry Kodrat
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of Radiotherapy Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| | - Demak Lumban Tobing
- Department of Clinical Pathology, Dharmais Cancer Hospital, Jl. Letjen Jend. S. Parman No.84-86 Jakarta 11420, Indonesia
| | | | - I Made Haryoga
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of Radiotherapy Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| | - Agustinus Gatot Dwiyono
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of Radiotherapy Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| | - Yoseph Adi Kristian
- Faculty of Medicine - University of Indonesia, Jl. Salemba Raya No. 6, Jakarta 10430, Indonesia.,Department of Radiotherapy Cipto Mangunkusumo Hospital, Jl. Diponegoro No. 71, Jakarta 10430, Indonesia
| |
Collapse
|
30
|
Management of locally recurrent nasopharyngeal carcinoma. Cancer Treat Rev 2019; 79:101890. [PMID: 31470314 DOI: 10.1016/j.ctrv.2019.101890] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
As a consequence of the current excellent loco-regional control rates attained using the generally accepted treatment paradigms involving intensity-modulated radiotherapy for nasopharyngeal carcinoma (NPC), only 10-20% of patients will suffer from local and/or nodal recurrence after primary treatment. Early detection of recurrence is important as localized recurrent disease is still potentially salvageable, but this treatment often incurs a high risk of major toxicities. Due to the possibility of radio-resistance of tumors which persist or recur despite adequate prior irradiation and the limited tolerance of adjacent normal tissues to sustain further additional treatment, the management of local failures remains one of the greatest challenges in this disease. Both surgical approaches for radical resection and specialized re-irradiation modalities have been explored. Unfortunately, available data are based on retrospective studies, and the majority of them are based on a small number of patients or relatively short follow-up. In this article, we will review the different salvage treatment options and associated prognostic factors for each of them. We will also propose a treatment algorithm based on the latest available evidence and discuss the future directions of treatment for locally recurrent NPC.
Collapse
|
31
|
Value of early evaluation of treatment response using 18F-FDG PET/CT parameters and the Epstein-Barr virus DNA load for prediction of outcome in patients with primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2018; 46:650-660. [DOI: 10.1007/s00259-018-4172-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
|
32
|
Intensity-modulated radiotherapy for paranasal sinuses and base of skull tumors. Oral Oncol 2018; 86:61-68. [PMID: 30409321 DOI: 10.1016/j.oraloncology.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
Paranasal sinus and skull base tumors are rare aggressive head and neck cancers, and typically present in the locally advanced stages. As a result, achieving wide surgical resection with clear margins is a challenge for these tumors, and radiotherapy is thus usually indicated as an adjuvant modality following surgery to optimize local control. Given the integral role of radiotherapy in the management of this subgroup of head and neck tumors, the advent of intensity-modulated radiotherapy (IMRT) has led to substantial improvement of clinical outcomes for these patients. This is primarily driven by the improvement in radiation dosimetry with IMRT compared to conventional two dimensional (2D)- and 3D-techniques, in terms of ensuring dose intensity to the tumor target coupled with minimizing dose exposure to critical organs. Consequently, the evident clinical benefits of IMRT have been in reduction of normal tissue toxicities, ranging from critical neurological symptoms to less debilitating but bothersome symptoms of eye infections and radiation-induced skin changes. Another domain where IMRT has potential clinical utility is in the management of a subset of non-resectable T4 paranasal sinus and skull base tumors. For these inoperable lesions, the steep dose-gradient between tumor and normal tissue is even more advantageous, given the crucial need to maintain dose intensity to the tumor. Innovative strategies in this space also include the use of induction chemotherapy for patient selection. In this review, we summarized the data for the aforementioned topics, including specific discussions on the different histologic subtypes of paranasal sinus and skull base tumors.
Collapse
|